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Ten years of Oregon Seed Certification Service (OSCS) preharvest field inspections converted from a nonspatial
database to a geographic information system (GIS) were analyzed for patterns in spatial distribution of occurrence and
severity of the 36 most common weeds of grass seed crops. This was done under the assumptions that those patterns
would be primarily consequences of interactions among farming practices, soil properties, and biological traits of the
weeds, and that improved understanding of the interactions would benefit the grass seed industry. Kriging, Ripley’s K-
function, and both Moran’s I spatial autocorrelation and Getis-Ord General G high/low clustering using the multiple
fixed distance band option all produced roughly similar classifications of weeds possessing strongest and weakest spatial
clustering patterns. When Moran’s I and General G analyses of maximum weed severity observed within individual
fields over the life of stands were conducted using the inverse distance weighting option, however, results were highly
sensitive to the presence of a small number of overlapping fields in the 10-yr record. Addition of any offset in the range
from 6 to 6,437 m to measured distances between field centroids in inverse distance weighting matrices removed this
sensitivity, and produced results closely matching those for the multiple fixed distance band method. Clustering was
significant for maximum severity within fields over the 10-yr period for all 43 weeds and in 78% of single-year analyses.
The remaining 22% of single-year cases showed random rather than dispersed distribution patterns. In decreasing
order, weeds with strongest inverse-distance spatial autocorrelation were German velvetgrass, field bindweed, roughstalk
bluegrass, annual bluegrass, orchardgrass, common velvetgrass, Italian ryegrass, Agrostis spp., and perennial ryegrass. Of
these nine weeds, distance for peak spatial autocorrelation ranged from 2 km for Agrostis spp. to 34 km for common
velvetgrass. Weeds with stronger spatial autocorrelation had greater range between distance of peak spatial
autocorrelation and maximum range of significance. Z-scores for General G high/low clustering were substantially
lower than corresponding values for Moran’s I spatial autocorrelation, although the same two weeds (German
velvetgrass and field bindweed) showed strongest clustering using both measures. Simultaneous patterns in Moran’s I
and General G implied that management practices relatively ineffective in controlling weeds usually played a greater
role in causing weeds to cluster than highly effective practices, although both types of practices impacted Italian ryegrass
distribution. Distance of peak high/low clustering among perennial weeds was smallest (1 to 3 km) for Canada thistle,
field bindweed, Agrostis spp., and western wildcucumber, likely indicating that these weeds occurred in patchy
infestations extending across neighboring fields. Although both wild carrot and field bindweed doubled in average
severity over the period from 1994 to 2003, wild carrot was the only weed clearly undergoing an increase in spatial
autocorrelation. Soil chemical and physical properties and dummy variables for soil type and crop explained small but
significant portions of total variance in redundancy and canonical correspondence analysis of weed occurrence and
severity. Fitch-Morgoliash tree diagrams and Redundancy Analysis (RDA) and Canonical Correspondence Analysis
(CCA) ordinations revealed substantial differences among soil types in weed occurrence and severity. Gi* local hot-spot
clustering combined with feature class to raster conversion protected grower expectations of confidentiality while
describing dominant spatial features of weed distribution patterns in maps released to the public.
Nomenclature: Annual bluegrass, Poa annua L. POAAN; Canada thistle, Cirsium arvense (L.) Scop. CIRAR; common
velvetgrass, Holcus lanatus L. HOLLA; field bindweed, Convolvulus arvensis L. CONAR; German velvetgrass, Holcus mollis
L. HOLMO; Italian ryegrass, Lolium multiflorum Lam. LOLMU; orchardgrass, Dactylis glomerata L. DACGL; perennial
ryegrass, Lolium perenne L. LOLPE; roughstalk bluegrass, Poa trivialis L. POATR; western wildcucumber, Marah oreganus
(T. & G.) T. J. Howell ECNOR; wild carrot, Daucus carota L. DAUCA.
Key words: Moran’s I spatial autocorrelation, Getis-Ord General G high/low clustering, Getis-Ord Gi* hot spot
analysis, kriging.

Use of geostatistics to analyze spatial and temporal
properties of weeds is an active area of research, with
increased weed management efficiency commonly cited as
the primary anticipated benefit (Clay et al. 2006; Colbach et
al. 2000; González-Andújar et al. 2001; Jurado-Expósito et al.
2003; Wiles and Schweizer 2002; Wyse-Pester et al. 2002). In
most cases, focus has been on patchiness of weeds within
individual fields; data were acquired using grid sampling
procedures, and kriged maps of weed distribution/density

were typical end products (Cardina et al. 1995; Donald 1994;
González-Andújar et al. 2001; Johnson et al. 1996; Jurado-
Expósito et al. 2003; Wiles and Schweizer 2002; Wyse-Pester
et al. 2002). Several researchers have extended their geospatial
analyses into associations among weeds and site characteristics
such as irrigation practices, soil chemistry, soil physical
properties, elevation, and moisture (Dieleman et al. 2000a,b;
McElroy et al. 2005; Wiles and Brodahl 2004). Comparisons
over time have evaluated the stability of weed patches as a
major determinant of the usefulness of weed maps in tailoring
herbicide applications for precision agriculture (Clay et al.
2006; Colbach et al. 2000). Numerous studies have centered
on the consequences of sampling methods, interpolation
procedures, and general statistical assumptions in mapping of
weeds and interpretation of results (Cardina et al. 1995;
Cousens et al. 2002; Dale 1999; Dille 2002; Johnson et al.
1996; Wiles and Schweizer 2002).
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General shortage of geospatial data on weeds is widely
recognized as the primary factor limiting weed scientists’
abilities to conduct analyses identifying management
practices and edaphic factors controlling behavior of these
pests across landscapes and over management practices
(Dieleman et al. 2000a,b; Donald 1994; Wiles and Brodahl
2004). Remote sensing has been explored as one way to
collect spatial data on weeds in a more cost-effective manner
than the traditional, labor-intensive, grid-sampling method
(Lass and Callihan 1997; Lass et al. 1996; Medlin et al.
2000). Common elements of nearly all previous research
have been a focus on within-field mapping of weed patches
and the relatively small number of separate fields generally
studied. In our analysis of OSCS field inspection reports for
grass seed crops of Linn County, OR, we have, at least
temporarily, abandoned concern over within-field variability
and broadened the focus of our analyses to the landscape
level to better understand the behavior of weeds in an entire
agricultural industry. In addition to expanding the physical
scale at which weeds are studied, we have expanded the
analytical tools to include not only kriging and other
interpolation methods but also a series of cluster analysis
procedures. As a consequence of the broader range of
inference possible when an entire industry is examined, we
anticipate our findings will improve the efficiency of weed
control efforts by farmers, and also support better-informed
research planning by weed scientists and decision-making by
regulatory agencies that manage activities ranging from plant
quarantine enforcement to herbicide registration. Two
major hurdles we faced in analyzing the GIS developed
from the OSCS field inspection reports were: (1) initial
unfamiliarity with geostatistical procedures for identifying
patterns and locating clusters in data, and (2) the need to
properly incorporate the effects of spatial autocorrelation
while analyzing relationships between geographic features
using more familiar tools such as analysis of variance or
regression. The approach we have developed is detailed in
this manuscript, along with the vision that approach has
provided of the behavior of weeds across an entire industry.
Many specialized agronomic practices are used in grass seed
production, including carbon-band planting, postharvest
residue management (field burning, baling, and chopping of
full straw load), early fall application of pre-emergence
herbicides to established stands of perennial crops, and mid-
fall through early spring application of marginally selective
herbicide treatments that control young seedling weeds
while damaging but generally not killing established
perennial crop plants (Lee 1966, 1973, 1981; Mueller-
Warrant 1990, 1999; Mueller-Warrant et al. 1991; Mueller-
Warrant and Neidlinger 1994; Mueller-Warrant and Rosato
2002, 2005). Concerns over seed purity in grass seed crops
often outweigh issues of yield loss from weed–crop
competition or damage from herbicide treatments.

Because of the importance that spatial autocorrelation
plays in potential modifications of familiar analytical
procedures, in addition to its central role in identifying
locations of clusters, proper analysis of spatial autocorrela-
tion is central to successful statistical analysis of geospatial
data. Moran’s I and Geary’s c are global measurements of
the overall pattern of spatial autocorrelation displayed
by numerical data, and test hypotheses that similar
values tend to cluster together, be randomly distributed, or
be dispersed more evenly across an area than would be

expected by chance (Mitchell 2005). Global Moran’s I is
calculated as
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where n is the number of features, xi is the value of feature i,
xj is the value of feature j, x̄ is the mean value of all features,
and wij is the weight assigned to each pair of features xi, xj

(Mitchell 2005). The expected value of Moran’s I for
randomly distributed values is IE 5 21 4 (n 2 1), which
becomes close to 0 for large n. If pairs of observations more
often have similar rather than dissimilar values, Moran’s I is
greater than 0, indicating that similar values are clustered.
Conversely, if more pairs have dissimilar rather than similar
values, Moran’s I is less than 0, indicating that values are
dispersed. Possible values for Moran’s I range from 21 to 1.
Statistical significance of Moran’s I is tested using a Z-score
calculated as the difference between the observed and
expected values for Moran’s I divided by the standard
deviation of the expected Moran’s I for randomly
distributed values (Mitchell 2005; Schabenberger and Got-
way 2005). The Getis-Ord General G high/low clustering
statistic not only tests for whether clustering has occurred,
but also tests specifically for whether above-average or
below-average values cluster more strongly. General G high/
low clustering is calculated as
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where xi is the value of feature i, xj is the value of feature j,
and wij is the weight assigned to each pair of features xi, xj

(Mitchell 2005). The expected value for Getis-Ord General
G for randomly distributed values is
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Large positive values for General G indicate that higher than
average values are clustered, whereas large negative values
indicate that lower than average values are clustered.
Statistical significance of Getis-Ord General G is tested
using a Z-score calculated as the difference between the
observed and expected values for General G divided by the
standard deviation of the expected General G for randomly
distributed values (Mitchell 2005). If both high values and
low values tend to cluster, General G will be positive if there
are more high values than low values, and negative if there
are more low values than high values. The weight matrix wij

for both Moran’s I and Getis-Ord General G can take on a
number of common forms. If wij 5 1 for all distances less
than some critical threshold and wij 5 0 beyond that
distance, then the weighting procedure is referred to as a
fixed distance band. If wij is inversely proportional to the
distance between pairs of points, then the weighting
procedure is referred to the inverse distance method. Spatial
statistics can be viewed as an extension of traditional
(nonspatial) statistics to primarily deal with the problem of
violation of the assumption of independence among
samples. Various methods of spatial statistics explicitly
model spatial autocorrelation and can correct the degrees of
freedom in significance tests for the lack of complete
independence among closely spaced points. In order to do
so, however, other assumptions must be made about the
data, violations of which have their own consequences. One
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common assumption is stationarity, or the absence of strong,
long-distance trends in the data. When this assumption is
violated, procedures such as Moran’s I and Getis-Ord
General G report that spatial autocorrelation and clustering
exist, but they fail to convey possibly far simpler underlying
explanations for the correlation, such as a long distance
north–south or east–west trend in the data. If spatial
autocorrelation and clustering are strictly defined to exclude
simple long distance trends, then violation of stationarity can
compromise the validity of statistical tests for spatial autocorre-
lation (Brownie and Gumpertz 1997). However, simulation
studies we conducted showed that the primary consequence of
adding long distance trends (i.e., violating stationarity) to data
with known hot spots was reduced ability to detect the hot spots
in areas where the long distance trends were strongest (data not
shown).

Once the presence of global patterns has been confirmed,
local versions of Moran’s I and Getis-Ord G statistics provide
statistical evidence for the presence of clusters that differ from
expected values at specific locations. Other measurements
commonly used to evaluate clustering of events include
quadrat analysis, nearest neighbor index, and K-function
(Dale 1999; Mitchell 2005). These latter three statistical
measurements, however, typically incorporate only the spatial
distribution of points and not the magnitude of observations
at those points, and hence can tend to provide less powerful
tests of spatial autocorrelation for data such as a weed severity
index in the OSCS field inspections. Local Getis-Ord Gi* is
calculated as G
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which Gi* is being calculated, xj is the value of feature j, and
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(Mitchell 2005). The weight matrix wij can assume any of the
forms described above for use in global Moran’s I and Getis-
Ord General G calculations. The expected value of Gi*
for randomly distributed values is E G
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A group of features with high Gi* values is indicative of a
cluster of features with high attribute values, or a hot spot, a
group with low (large negative) Gi* values is a cold spot, and
points with Gi* values close to zero are viewed as neither.
Statistical significance of Gi* for randomly distributed values
is tested using a Z-score calculated as the difference between
the observed and expected values for Gi* divided by square
root of the variance of Gi* for all features (Mitchell 2005).
Statistical concerns that exist regarding use of local Gi*
include: (1) edge effects, where points near boundaries of the
study area have fewer neighbors than points in the interior,
exaggerating similarities and differences; (2) skewing of the
distribution by outliers when small numbers of features are
being analyzed, typically viewed as fewer than 30 points; (3)
diminished ability to detect individual clusters when strong
global patterns are present; and (4) distortion of the
confidence level in Z-tests due to lack of independence
between features. The confidence level issue is conceptually
similar to multiple comparisons problem in traditional
analysis of variance, and Bonferroni-style corrections that
attempt to control the chance of making any single Type I
error within the whole set of multiple comparisons do so at the
expense of increasing the frequency of Type II errors.
Schabenberger and Gotway (2005) summarize the current
view by statisticians of local indicators of spatial autocorre-
lation (LISA) in the following statements: (1) ‘‘The exact

distributional properties of the autocorrelation statistics are
elusive’’ and (2) ‘‘It is not clear how to adjust individual Type-
I error levels to maintain a desired overall level.’’ Despite this
ambiguity by statisticians in their view of LISAs, Mitchell
(2005) leaves little room for doubt in his description of the
most incontrovertible feature of spatial statistics when he says,
‘‘it’s not uncommon in the GIS setting to find yourself
working with very large datasets. Obtaining statistical
significance in these cases will not be difficult if you’re
analyzing several thousand features or more.’’

Our choice of Moran’s I and Getis-Ord General G global
statistics and Gi* hot-spot analysis local statistics to analyze
spatial patterns of weed occurrence and severity does not mean
that we believe other techniques, such probability mapping in
kriging, if properly conducted, would not also lead to similar
interpretations of weed behavior. Our choice simply meant
that we believed the Gi* hot-spot analysis method in
particular could successfully extract the most important
features of our complex dataset. The set of tools for analyzing
spatial patterns within the ArcGIS environment expanded
greatly over the period of time in which we conducted this
research in a series of new product releases from Environ-
mental Systems Research Institute (ESRI). Methods exist for
exporting data from ArcGIS into other programming
environments, including spreadsheets such as Microsoft Excel,
statistical packages such as R and SAS, and high-level
languages such as Python. Portions of our analyses were
conducted in a number of these alternative environments,
sometimes to overcome limitations built into ArcGIS and
sometimes merely to verify the validity of our results.

Our broad objective was to analyze spatial distribution
patterns in occurrence and severity of the 36 most commonly
occurring weeds in preharvest inspections of certified grass
seed crops conducted by the OSCS under the assumption that
any patterns present would be the result of interactions over
time among farming practices, soil properties, and innate
biological traits of the weeds. It is our hope that improved
understanding of those interactions will benefit the grass seed
industry in its ongoing struggle to control weeds. Because
these analyses were done both with and without inclusion of
information on the location of seven of those weeds when they
were also grown as crops, we actually analyzed 43 cases. Our
specific objectives were to: (1) determine whether the global
distribution patterns of occurrence and severity of common
weeds of grass seed crops in Linn County, OR, were clustered,
dispersed, or random; (2) for weeds with clustered distribu-
tion patterns, determine whether the more severe infestations
or relatively weed-free fields were more strongly grouped; (3)
characterize possible changes over the 10-yr period in
clustering patterns of grass seed weeds; (4) map local hot
spots of strongly clustered weeds in a format suitable for
release to the general public without violating OSCS promises
of confidentiality to the growers; and (5) identify edaphic
characteristics and crop management practices linked to
location of these hot spots.

Materials and Methods

GIS Data Sources. A more complete description of
procedures used to acquire and georeference data on the
severity and spatial distribution of weeds in OSCS records of
preharvest field inspections will be provided in another
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manuscript currently under preparation. In brief, information
in a nonspatial database of the OSCS was exported as a series
of text files using a web browser interface, imported into
Microsoft Excel spreadsheets, manipulated into more conve-
nient data formats, and imported into an ArcGIS personal
geodatabase. Within ArcGIS, information from the OSCS
records were combined with common land unit (CLU)
polygons from USDA–Farm Service Administration (FSA),
Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) imagery, and ground-truth data to
create a georeferenced database of cropping patterns and weed
severity indices from 1994 to 2003 for 10,643 harvests from
2,779 distinct certified grass seed fields in Linn County, OR.
Six nearby fields in neighboring counties were included in the
geospatial analysis. Although field shapes were kept constant
for all years of production of a given certified stand, field
shapes often changed through merger or subdivision of fields
during rotations from one certified stand to the next. When
all fields present over the 10-yr period were displayed on a
single map, it became possible for individual fields to partially
overlap and their centroids to fall at arbitrarily close distances
to one another. Access to the OSCS database had been
granted under provision that no confidential business
information would be publicly released. Maximum weed
severity values occurring throughout the life of individual
grass seed stands were extracted from the individual year data.
In addition to values of 0, 0.75, 1.75, and 2.75, which denoted
the absence of a weed or its presence at trace, many, or excessive
levels, respectively, we added a value of 3.75 to handle the case
of species previously grown as a crop (e.g., Italian ryegrass and
Kentucky bluegrass [Poa pratensis L. POAPR]). The severity
index corresponded approximately to logarithmic differences in
plant density (R. Cook 2003, personal communication).
Justification for selecting these particular values to transform
the ordinal data into interval data is given below in the
‘‘Statistical Analyses’’ section of Materials and Methods and in
the ‘‘Year-to-Year Changes in Severity of Weeds in Established
Grass Seed Stands’’ section of Results and Discussion.

Soil Survey Geographic Database soil data was obtained
from the USDA–NRCS Soil Data Mart at http://soildatamart.
nrcs.usda.gov/ on March 25, 2006 for Benton, Lane, Linn,
Marion, Polk, and Yamhill counties of western Oregon. Data
from each county were converted to a more limited,
standardized set of soil names by pooling soil types that
differed only in slope, and counties were merged to create a
single shapefile of western Oregon soils using uniform soil type
names. This shapefile was clipped by field polygons from the
grass seed cropping database, and the areas of the 9,760
resulting polygons were calculated. Physical and chemical
characteristics of these soil types were obtained from Benton
County data when available and otherwise from Linn, Lane, or
Marion county data. Data were exported in text file format and
imported into Microsoft Excel to identify subsets of soil types
covering a minimum of 5, 10, or 21% of the area of each
individual field, along with identifying the single most
common soil type present in each field. In the most extreme
case, the majority soil type covered only 21% of a single field’s
total area. Weed severity values from each individual field were
assigned to all soil type polygons derived from that field.

Statistical Analyses. Validity of our conversion of weed
severity scores from ordinal to interval data type was evaluated

by several procedures in line with fundamental principles of
statistics as described by Steele et al. (1997), and in particular
the ability of logarithmic transformations to normalize
variances that otherwise tend to increase with increasing
means (Box 1988). First, we carefully considered statistical
implications of possible violations of the equal spacing
requirement that similar differences between pairs of data
values have similar meaning for all pairs in interval data.
Second, we tested for normality of data using an initial
logarithmic range conversion of 0, 1, 2, 3, and 4 for absence of
a weed, presence at trace, many, and excessive levels, and
production as a crop, and alternate conversions from ordinal
to interval data using different distances between the weed
severity ratings, particularly between absence of a weed and its
presence at trace levels. Reasons for our final selection of 0,
0.75, 1.75, 2.75, and 3.75 as the best values for conversion
from ordinal to interval data are provided below in the Results
and Discussion section. Third, we directly observed the rating
process for a number of weeds in preharvest field inspections,
simultaneously making our own visual ratings of ground cover
and stand density of those weeds and noting the approxi-
mately exponential differences in ground cover (or stand
density) between cases in which weeds were rated as occurring
at trace, many, and excessive levels.

Weed severity values from each individual year were
analyzed in some cases, although most of our analyses were
conducted on the maximum severity observed over the entire
10-yr period within individual fields. Preliminary analyses
conducted using both 10-yr average severity and 10-yr
maximum severity revealed very little difference between the
two methods of pooling over time, mainly because most of the
nonzero observations were simply detections at the trace level.
Spatial clustering was characterized using both Moran’s I
spatial autocorrelation and Getis-Ord General G high/low
clustering procedures of ArcGIS. Both procedures require that
observations at any one location be single valued, and they
convert polygons to centroids if spatial data type is polygon
rather than point. For both measures of clustering, inverse
distance weighting and fixed distance weighting methods were
used to define spatial neighborhoods (Mitchell 2005). In
addition to the distance weighting options available within
ArcGIS, we have followed Mitchell’s (2005) suggestion and
modified the inverse distance weighting matrices by addition
of a series of arbitrary offsets to the calculated distances
between polygon centroids before taking the inverse. If Dij is
the Euclidean distance between points i and j, SO is the
arbitrary spatial offset being introduced, and wij is the weight
matrix for use in Moran’s I, Getis-Ord General G, and Gi*
calculations, then wij 5 1 4 (Dij + SO), which reduces to
simple inverse distance weighting when SO 5 0. Spatial
offsets tested ranged from 0.3 to 12,875 m in factors of two.
Python scripts used to convert the raw spatial distance matrix
exported from ArcGIS into modified inverse distance matrices
are available online at http://www.ars.usda.gov/pandp/people/
people.htm?personid54006. Regression of spatial autocorre-
lation and high/low clustering vs. logarithm of offset distance
was conducted in R version 2.6.0 (R Development Core
Team 2007; available online at http://www.r-project.org/)
using a linear model that included main effects of weed species
and third or second degree polynomial logarithmic offset
distances, respectively. The Vegan package in R was used to
conduct principal component and other multivariate analyses.
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Chi-square tests for independence vs. interaction of weed
species and soil type as classification factors in contingency
tables were used to determine the need for presenting full
matrices rather than mean values for each weed species or soil
type (Steel et al. 1997). Chi-square tests were conducted using
three weed severity reclassification categories (absent, present
only at trace levels, or present at greater than trace levels) and
also using just two categories (absent vs. present at any level).
In the interest of space, only results for the presence vs.
absence of weed species within soil types are being reported.
Also in the interest of space, only results for soil types covering
at least 21% of the area within any field are being reported.
Soil types infrequently present in grass seed fields whose chi-
square tests for freedom from interaction with any of the 43
weeds were nonsignificant have also been excluded from our
summaries. PHYLIP (Phylogeny Inference Package) ver. 3.65
available at http://evolution.gs.washington.edu/phylip.html
was used to generate Fitch-Margoliash tree diagrams of
dissimilarity of weed occurrence at any level in 36 soil types
averaged over weed species and dissimilarity of 35 weed
species averaged over soil types using the Global search
option. Multivariate analyses in R of weed occurrence and
severity are presented as bi-plot ordinations and as compar-
ison of models in table format.

Hot spot Localization. We generated local Getis-Ord Gi*
hot-spot maps of weed severity clusters for all 43 weeds using
fixed distance neighborhoods set equal to the distance of peak
clustering of the global Getis-Ord General G statistic (Mitchell
2005). For weeds in which peak clustering distance was less
than 4 km we used a distance range of 4 km to minimize the
potential for disclosure of the actual inspection report findings
on individual fields, which are viewed by the seed industry as
confidential business information. To further protect confi-
dentiality of grower data in final maps, we degraded their
spatial resolution by assigning Gi* values to centroids rather
than polygons, converting from points to rasters by inverse
distance weighting (power 5 1, number of neighboring points
5 12) interpolation, and clipping the rasters by 1.61 km
buffers around original fields, omitting buffer regions in which
there was only a single field. Additional protection of grower
privacy was provided by identifying 16 fields at which fewer
than seven points fell within the 4 km minimum fixed distance
band used in the Gi* calculation, and masking buffers halfway
from these points to areas with denser data. Rasters of
probability that weed severity was significantly lower or higher
than average were clipped to the publicly available 1999
Oregon Current Wildlife Habitat (http://www.nwhi.org) raster
for agricultural land and urban areas to omit areas of other
landuses, primarily forests and riparian zones.

Results and Discussion

Year-to-Year Changes in Severity of Weeds in Established
Grass Seed Stands. Year-to-year changes in weed severity
provided the best opportunity to test the normality (and other
statistical properties) of our conversion of OSCS inspection
ratings of absent, trace, many, excessive, and grown as crop into
interval data. We initially tested conversion from ordinal to
interval data using values of 0, 1, 2, 3, and 4 for the five
classes. Such a transformation is in line with procedures noted
by Kenkel et al. (2002) as being ‘‘appropriate in cases where a

biological population (e.g., a weed newly introduced into a
field) is capable of exponential increases in cover abundance.’’
Logarithmic transformations are also useful in achieving
normality in cases where effective herbicide treatments lower
weed populations by exponential factors compared to
untreated checks or plots invaded by herbicide-resistant weeds
(Mueller-Warrant et al. 2007). Examination of year-to-year
changes in severity of weeds within individual fields calculated
using this initial conversion scale revealed some relatively
minor abnormality in the distribution of data. Testing of a
range of alternate conversion scales identified the need to
reduce spacing between values representing absent and present
at a trace compared to distances between each of the
remaining classes. Optimal conversion scales to provide
normality in the data varied for each individual weed, but
results for four of the most serious ones, Italian ryegrass,
annual bluegrass, roughstalk bluegrass, and Canada thistle,
averaged to a factor of 0.75 for the ratio of the distance
between absent and present at a trace vs. distances between
each of the other classes in order. This generated a conversion
scale of 0, 0.75, 1.75, 2.75, and 3.75 for ratings of absent,
trace, many, excessive, and grown as a crop that was then used
for all weed species. Comparison of results using the initial 0,
1, 2, 3, and 4 conversion scale and the final 0, 0.75, 1.75,
2.75, and 3.75 conversion scale revealed no major changes in
interpretation or statistical significance of regressions of weed
occurrence or severity over time and between stands (data not
shown). Similarly, maps of weed severity hot-spot probability
produced using both conversion scales were nearly identical
(maps using initial 0, 1, 2, 3, and 4 conversion scale are not
shown). When data were represented using linear scales for
severity (e.g., 0, 0.1, 1, 10, 100) rather then the logarithmic
transformation ultimately selected, analyses and maps were
dominated either by the few cases in which weeds were rated
as severe or by the inclusion of fields in which species were
grown as crops (data not shown). As a consequence of the
domination of linear scales by outliers, many analyses that were
statistically significant using the logarithmic conversion scale
were nonsignificant using linear representations of severity.

Nearly half of the grasses and two-thirds of the broadleaf
weeds increased in occurrence and severity over the period
from 1994 to 2003 (data not shown). The most rapidly
increasing grasses included roughstalk bluegrass, rattail fescue
[Vulpia myuros (L.) K. C. Gmel. VLPMY], and annual
bluegrass, while most rapidly increasing broadleaves included
Canada thistle, field bindweed, groundsel, wild carrot,
Himalaya blackberry (Rubus discolor Weihe & Nees RUBDI),
and prickly lettuce (Lactuca serriola L. LACSE) (data not
shown). The most common change was for a field to
transition from having no detections of these weeds in the
earlier years of this time period to having detections at the
trace level in the later years. For roughstalk bluegrass, field
bindweed, and Canada thistle, however, ratings at the many
level also increased in frequency, especially from the beginning
to the middle of the period, years that coincided with a
mandatory phase-down in field burning. Regression of field
bindweed and wild carrot severity over time indicated that
these two species more than doubled in average severity from
1994 to 2003 (data not shown).

Exploratory Analysis of Spatial Data. Exploratory data
analysis and presentation methods applied to weed severity
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scores included inverse distance weighting (IDW) interpola-
tion and ordinary kriging, both of which convert point data
representing conditions at field centroids into raster predic-
tion surfaces covering both field polygons and areas between
fields. IDW on weed severity within individual years or on
maximum severity observed within fields over the 10-yr
period generally produced complex rasters with many striking
‘‘bull’s-eye’’ features centered on individual fields. The bull’s-
eyes occurred whenever individual fields with nonzero severity
for particular weed species were surrounded by fields with no
detections of that weed. Because IDW is an exact interpolator
at points from which the rasters are generated, maps created
using this procedure could in theory be converted back to
actual values at field centroids and thereby risked violating
grower expectations of data confidentiality. IDW maps of
weed severity were also unsuited to our purposes because they
were often highly variable at small spatial scales, tending to
obscure larger scale trends in the ‘‘noise’’ among neighboring
fields. After rejecting use of IDW, ordinary kriging was next
evaluated as a means to analyze data and produce maps
suitable for public release. Unlike IDW, kriging can produce
both an interpolated prediction surface and a matching
probability surface. Because the interpolated values need not
exactly match the original point values, kriging prediction
surfaces could protect confidentiality of individual field data.
Although kriging is a powerful method for potentially
extracting significant spatial trends in data, it is also quite
complex and involves selection of models for the empirical
semivariogram and setting of numerous parameters, including
lag distance, bin size, and anisotropy. Kriging achieves
computational efficiency in calculating spatial autocorrelation
by grouping points into relatively small numbers of bins of
integer multiples of the lag distance, but because of this
binning the empirical semivariogram in kriging is only an
approximation of the true spatial autocorrelation. Primary
features of interest in the empirical semivariogram are the
nugget, partial sill, sill, and range, where the nugget represents
microscale variation and/or measurement error, the sill
represents variance in the data at distances beyond the range
of spatial autocorrelation, the partial sill is the difference
between the sill and the nugget, and the range represents the
maximum distance over which values are spatially autocorre-
lated. Kriging of maximum weed severity observed within
fields over the 10-yr period using ArcGIS default parameters
revealed nonzero partial sills for 35 of 43 weeds, suggesting
that spatial autocorrelation existed for most, but perhaps not
all, weeds. Ratio of partial sill to sill was greatest in German
velvetgrass at 0.75, and exceeded 0.2 in 22 cases. Range
exceeded the distance between the two most widely separated
fields for 15 of the 43 weeds, suggesting that either spatial
autocorrelation truly extended out beyond the spatial extent of
our data or that kriging using ArcGIS default parameters was
not necessarily providing accurate estimates of spatial
autocorrelation. Kriging probability maps in general identified
the same areas of high and low probability of weed severity
that the Gi* method identified (kriging probability data not
shown, Gi* results presented below in the section on ‘‘Hot
Spot Localization’’). One methodological concern with
kriging is the possible impact of violation of the stationarity
assumption on results (Isaaks and Srivastava 1989). Kriging
options in ArcGIS include detrending for removal of up to
third order trends, with the polynomial surface added back
into the final prediction map. We explored the effects of first

and second order detrending of data for roughstalk bluegrass,
annual bluegrass, and German velvetgrass, species showing
strong concentrations in particular regions of our study area,
and also for other species with more scattered occurrence. Use
of detrending had virtually no impact on the prediction maps
for any of the weeds. Detrending did generate a few relatively
minor differences in kriging probability maps for annual and
roughstalk bluegrass, species with strong concentrations near
the center of the study area and diminished severity near some
of the edges, particularly the northeast. These minor
differences generally occurred on very small scales, seldom
shifting boundaries for particular probability levels by more
than 300 m. A likely cause for the absence of benefits from
detrending (or the absence of problems with stationarity) can
be found in the statement by Isaaks and Srivastava (1989) that
‘‘the stationarity assumption applies not to the entire data set
but only to the search neighborhood’’ used in kriging around
each point. As we show below in the section on ‘‘Distance for
Peak and Maximum Range of Significance of Spatial
Autocorrelation and High/Low Clustering,’’ the average
distance at which spatial autocorrelation peaked was
13.5 km for Moran’s I and 17.7 km for General G, values
small enough compared to the entire study area that the
stationarity assumption would be relatively easily satisfied in
the local search radius neighborhood. Rather than attempting
to optimize parameter settings and model selection for
kriging, we chose to use Moran’s I and Getis-Ord General
G to measure spatial autocorrelation in our weeds, and hot-
spot analysis to develop maps for release to the general public.

Other potential concerns in spatial data analysis include
boundary effects, scaling issues, the modifiable areal unit
problem, and clustering of sample locations (Schabenberger
and Gotway 2005; Unwin 1996). The underlying theme in all
of these concerns is the possibility that the statistical results
which are obtained might be sensitive to the scales at which
data are aggregated and arbitrary boundaries used in that
aggregation. The general approach we took to minimize such
problems was to avoid aggregating data by political
boundaries and land ownership patterns, instead using
distances between field centroids in all our spatial analyses.
The OSCS field inspection process itself aggregated data at
the individual field level, and we have no way of knowing
what, if any, problems such within-field aggregation might
have created. Delineation of weed patches within fields might
be a useful approach in further research to determine whether
some of the weed species truly cluster most strongly at smaller
scales than the ones we could measure between fields. The
next level of concern on scaling and boundary issues was
whether certain distances between field centroids were
unusually common (such as multiples of 0.8 km between
square fields 65 ha in size laid out on a grid pattern) and thus
able to distort measurement of spatial autocorrelation. Two
factors worked to limit this concern. First, grass seed fields in
Linn County, OR, occurred in a wide range of shapes and
sizes (mean size 18.4 ha, standard deviation 17.4 ha),
reducing the likelihood that certain particular distances
between field centroids were overly common. Second, values
obtained for ranges at which spatial autocorrelation peaked
(see next section below) for most weeds greatly exceeded low
integer multiples of the 0.4 km distance between adjacent
square 16.2 ha fields, the most common field size. The final
scaling issue was whether results near the outer spatial
boundary of the data were erratic because points near a
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boundary might have relatively few neighbors compared to
points further into the interior. If the distance at which spatial
autocorrelation peaked had turned out to be on the order of
the distance between fields and their nearest neighbors, then
points near the outer boundary would indeed have had
relatively small numbers of neighbors compared to points
further in, and hence more erratic measurements of spatial
statistics. Because the range at which spatial autocorrelation
peaked for most weeds was much larger than typical distance
between nearest neighboring fields, even points on the very
edge of our study area possessed a large number of neighbors
for use in calculations of spatial autocorrelation. One
additional concern in spatial statistics is that the sample
points themselves might form a nonrandom pattern and
cluster most strongly at certain scales. Even though the
Moran’s I and Getis-Ord General G statistics actually measure
the extent to which values (e.g., weed severity) at points in
space cluster more strongly than the points themselves, we also
conducted Ripley’s K-function analysis to directly measure
clustering of the fields. Ripley’s K-function measures
clustering over a range of distances, and it indicated that the
field centroids possessed moderately strong clustering at small
distances, with clustering becoming nonsignificant at all
distances beyond 34 km. Ripley’s K-function includes a
weight field option that can be set to the severity of individual
weeds, and doing so increased the strength of clustering in all
cases over that for the fields themselves (data not shown).
Although Ripley’s K-function might serve as an alternative
approach to the one we used to measure distance of peak spatial
autocorrelation, it was not available in the earlier version of
ArcGIS with which we conducted most of our analyses.

Even without extensive efforts to optimize parameters,
kriging of maximum weed severity over the 10-yr period
showed that at least 35 of the 43 weeds were spatially
autocorrelated to some degree. Kriging also identified German
velvetgrass as being the species for which spatial autocorre-
lation was the strongest. The simplest agronomic interpreta-
tion of strong spatial autocorrelation is that a weed is not just
randomly present across the landscape, but rather is favored in
certain geographic areas and less likely to do well in others.
Possible causes for such an effect are numerous, and although
our exploratory analysis using kriging neither confirmed nor
denied any of them, the list must logically include soil type
acting as a surrogate for soil chemical and physical properties,
crop species grown, crop management practices (including
stand establishment procedures, crop rotation options, stand
age, postharvest residue management [baling, field burning,
full straw load chop], and available weed control techniques),
and stochastic events in landownership history and weed
species introductions into fields. Evidence for or against the
role of any of these particular factors in creating the current
patterns of weed occurrence and severity, and the spatial
autocorrelation of those occurrences and severity, are
presented in sections below as such evidence is uncovered in
more detailed analyses.

Moran’s I Spatial Autocorrelation of Maximum Weed
Severity within Fields over the 10-yr Period. Puzzling
differences occurred when Moran’s I spatial autocorrelation of
43 weeds using default settings in ArcGIS (simple inverse
distance weighting) were conducted on the maximum severity
observed over the 10-yr period within fields and on the

observed severity in fields within individual years. Specifically,
spatial autocorrelation was more frequently significant within
individual years than using the maximum severity over the 10-
yr period. Spatial autocorrelation for the 10-yr maximum
severity was also more frequently significant using the fixed-
distance neighborhood method over a wide range of critical
neighborhood distances than when using simple inverse
distance weighting. We therefore examined the distance
matrix for our 2,785 fields, and discovered that of the
3,876,720 pairs of nonidentical fields, centroids were less than
1 m apart for three pairs, less than 10 m for 37 pairs, less than
30 m for 77 pairs, less than 100 m for 223 pairs, less than
200 m for 628 pairs, and less than 400 m for 2,503 pairs. In
contrast to these unusually close fields, the average distance
between fields was 28 km. Removal of pairs of fields from the
inverse distance matrix whose distances were less than 30 m
dramatically changed the Moran’s I spatial autocorrelation for
10-yr maximum severity, with all 43 weeds showing
significant spatial autocorrelation, in contrast to only four
weeds (field bindweed, German velvetgrass, annual bluegrass,
and Italian ryegrass, excluding cases grown as crop) when all
pairs of points were included. These unusually close distances
between field centroids generally represented cases where field
boundaries had been changed from one certified crop to the
next, and their existence complicated efforts to measure spatial
autocorrelation consistently. Rather than simply excluding
from analysis pairs of points closer than some arbitrarily
designated distance, we explored the impact of adding a wide
range of distance offset values (results averaged over all 43
weeds for offsets ranging from 0.3 to 12,875 m are shown in
Figure 1) to distance measurements prior to taking inverses in
inverse distance weighting matrices. The approach we took of
adding relatively small spatial offsets to distances between
fields was in line with suggestions by Mitchell (2005) who
warned ArcGIS users about problems that unusually close
points could cause in the calculation of spatial autocorrelation.
Spatial autocorrelation was significant for all 43 weeds using
distance offset values ranging from 12.5 to 12,875 m, and an
offset of 6 m was sufficient to achieve significance for 41 of 43
weeds (data not shown). Peak of the cubic polynomial fit to
Moran’s I spatial autocorrelation averaged over the 43 weeds
occurred at 2,287 m, whereas spatial autocorrelation greater
than or equal to 90% of this peak occurred over a wide range
from 330 to 12,567 m (Figure 1). Similar analyses using
median rather than mean Z-scores for Moran’s I spatial
autocorrelation indicated that optimal spatial offsets ranged
from 201 to 3,219 m. These results implied that there was a
broad range in acceptable spatial offsets capable of correcting
the simple inverse distance weighting analysis artifacts
generated by the small number of overlapping fields in the
10-yr record. There was little reason to worry about exactly
which value was selected for the spatial offset as long as it was
large enough to remove the dominance of the few very closely
spaced centroids and not so large as to dilute out real effects
among the majority of fields. In calculations of spatial
autocorrelation of weed severity scores within individual years,
no meaningful differences existed between analyses conducted
using modestly-sized spatial offsets (e.g., 402 m) and the
ArcGIS inverse distance weighting default of no offset (data
not shown). Because kriging groups points into a somewhat
arbitrary number of bins defined by integer multiples of a
common lag distance measured out from each individual
point (Isaaks and Srivastava 1989), the few closely separated
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centroids in the 10-yr maximum severity data had no
undesirable impact on calculations of the empirical semivar-
iogram central to the kriging process. In kriging our data, we
typically used 50 to 200 bins with lag sizes from 100 to
400 m, creating bins usually containing at least 10 and often
as many as 100 points apiece. Unlike the inverse distance
weighting procedure being used in Moran’s I calculations,
kriging would assign equal weights to all points within a single
bin, and hence a few extremely closely spaced points could not
dominate the calculations. It is interesting to note that the size
of the spatial offset we added to the inverse distance weighting
matrices to correct the artifact caused by the few overlapping
fields was similar to the typical lag size used in kriging the
data.

Using a 402 m distance offset in creation of the weighting
matrix, the nine weeds with strongest spatial autocorrelation
for their 10-yr maximum severity, arranged in decreasing
order of strength, were German velvetgrass, field bindweed,
roughstalk bluegrass, annual bluegrass, orchardgrass, common
velvetgrass, Italian ryegrass, Agrostis spp. (creeping bentgrass
[Agrostis stolonifera L. AGSST] and Colonial bentgrass
[Agrostis tenuis Sibth. AGSTE]), and perennial ryegrass
(Table 1). These nine species were also the only ones with
Z-scores for spatial autocorrelation in excess of the mean for
all species. With exception of Kentucky bluegrass and
roughstalk bluegrass, spatial autocorrelation for the seven
weeds also grown as crops was stronger when fields growing
those crops were included in the analyses than when they were
excluded. For orchardgrass, Agrostis spp., and perennial
ryegrass, spatial autocorrelation was stronger than the mean
over all weeds only when fields in which these species were
grown as crops were included.

Statistically significant spatial autocorrelation was found to
exist in maximum severity within fields over the 10-yr period
for all 43 weeds using Moran’s I. Large differences existed
among weed species in the strength of this spatial autocor-
relation, and the list of weeds with the strongest spatial
autocorrelation includes most of the weeds viewed as serious
problems by the grass seed industry. This overlap is unlikely to
be a random coincidence, and instead implies that weeds such

as German velvetgrass, field bindweed, roughstalk bluegrass,
annual bluegrass, Italian ryegrass, and Agrostis spp. are to some
degree heterogeneous rather than ubiquitous problems in grass
seed production. Behaviors of Italian ryegrass represent several
ways in which this can occur. First, this species is widely
grown as a crop, and fields in which it was recently grown are
prime candidates for problems with it in other following
crops. Second, it is much more likely to be a problem in first-
year, fall-planted stands of other grass seed crops as opposed
to older stands. Because the crops themselves vary in typical
stand life, they also would vary in proportion of that life
represented by the establishment year. Problems with rough-
stalk bluegrass and Agrostis spp. typically increase in severity
with stand age, and hence could vary with other factors
influencing how long individual grass seed stands are kept in
production.

Getis-Ord General G High/Low Clustering of Maximum
Weed Severity within Fields over the 10-yr Period. Getis-
Ord General G high/low clustering analyses were conducted
over the same sets of data using the same distance
(neighborhood) weighting procedures as had been used for
Moran’s I spatial autocorrelation. In no cases was General G
high/low clustering for maximum severity over the 10-yr
period significant for the lower than average weed severity
values (Table 2). Only five weeds showed significant high
value clustering using the simple inverse distance weighting
method. Spatial offsets between pairs of points of 0.3, 0.6,
1.5, 3, 6, 12.5, 25, 50, 101, 201, and 402 m in inverse
distance weighting matrices increased significance of high
value clustering to 15, 21, 31, 33, 33, 35, 36, 37, 37, 37, and
37 of the 43 cases for 10-yr maximum weed severity (data not
shown). Peak of the quadratic polynomial fit to General G
high/low clustering occurred at 201 m, whereas high/low
clustering greater than or equal to 90% of this peak occurred
over a range from 22 to 1825 m (Figure 1).

In general, Z-scores for Getis-Ord General G high/low
clustering were substantially lower than corresponding Z-
scores for Moran’s I spatial autocorrelation, with median Z-
scores for General G being smaller by a factor of 3.07-fold. In
addition to the six fewer cases of significance at optimum
spatial offset, a slightly different group of weeds possessed
higher than average Z-scores for General G high/low
clustering than for Moran’s I spatial autocorrelation. The 14
weeds with above-average high value clustering, arranged in
decreasing order of strength, were German velvetgrass, field
bindweed, Amaranthus spp. (Powell amaranth [Amaranthus
powellii S. Wats. AMAPO] and redroot pigweed [Amaranthus
retroflexus L. AMARE]), Kentucky bluegrass, roughstalk
bluegrass, annual bluegrass, quackgrass [Elytrigia repens (L.)
Nevski AGRRE], Agrostis spp., western wildcucumber,
common velvetgrass, rattail fescue, sharppoint fluvellin
[Kickxia elatine (L.) Dumort KICEL], perennial ryegrass,
and orchardgrass. For the seven weeds also grown as crops,
General G high value clustering showed more variable
responses to inclusion or exclusion of fields growing those
crops than occurred with Moran’s I spatial autocorrelation.
Similar to Moran’s I results, high value clustering was stronger
when fields growing those crops were included in the analyses
rather than excluded for Agrostis spp. and orchardgrass. In
contrast to the Moran’s I analyses, high value clustering was
stronger when fields growing those crops were excluded from

Figure 1. Moran’s I spatial autocorrelation and Getis-Ord General G high/low
clustering of weed severity averaged over 43 weed species vs. offsets in decimeters
added to Euclidean distance between field centroids. Moran’s I 5 1.3835 2
1.7131 ? log(offset) + 5.5249 ? log(offset)2 2 0.8149 ? log(offset)3, R2 5 0.754.
General G 5 21.6401 + 6.1687 ? log(offset) 2 0.9335 ? log(offset)2, R2 5
0.843. R2 based on general linear model including main effects of weed species
and polynomial logarithmic offset distances.
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the analyses for Italian ryegrass and perennial ryegrass. High-
value clustering was nonsignificant for tall fescue (Festuca
arundinacea Schreb. FESAR) with or without inclusion of
crop cases. As with Moran’s I spatial autocorrelation, Getis-
Ord General G high value clustering for Kentucky bluegrass
and roughstalk bluegrass tended not to be affected by whether
or not the few fields in which they were grown as crops in
western Oregon were included. We chose a spatial offset of
402 m for all further analyses because that value did the best
job of simultaneously maximizing both Moran’s I spatial
autocorrelation and Getis-Ord General G high/low clustering,
although results would have been nearly identical using any
offset in a range from 201 to 1,609 m. An alternate
perspective on use of the spatial offset is to simply view it as
a means of representing possible uncertainty in location of

weeds within individual fields in the calculation of distances
between fields, because the average field size of 18.4 ha would
correspond to an average field width of 429 m. Further
confirmation of the validity of our use of spatial offsets comes
from comparison of average Z-scores for Moran’s I and Getis-
Ord General G at peak distance in the fixed distance
weighting method (average Z-scores 5 30 and 10 in Table 3)
with maxima of the polynomial curves of Z-score vs. spatial
offset distance in the inverse distance weighting method (Z-
score maxima 5 31 and 9 in Figure 1).

Similarities and differences between Moran’s I spatial
autocorrelation and Getis-Ord General G high/low clustering
of maximum weed severity in the 10-yr period provide several
further insights into agronomic factors influencing the
behavior of weeds. In no case was General G significant for

Table 1. Moran’s I spatial autocorrelation for severity of common grass seed weeds, Linn County, Oregon, by 10-yr maximum and by year, 1994 to 2003.

Weed species

Z-score for 10-yr maximum or single year severity indexa

10-yr maximum severity 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

AGRRE 28.16 4.02 11.17 6.39 4.92 2.90 3.33 8.67 8.76 4.88 17.96
AGSST & AGSTEb 42.46 24.73 23.10 30.42 28.53 28.61 35.05 28.40 18.31 19.36 18.64
AGSST & AGSTEc 18.81 0.84 4.47 6.35 5.36 3.28 3.27 3.28 6.57 6.34 5.48
AMAPO & AMARE 21.84 9.51 3.53 0.69 8.12 4.18 3.52 1.26 1.90 1.73 9.90
ANTCO 13.33 7.43 0.43 5.74 0.81 6.66 6.30 3.30 3.38 1.06 2.94
AVESA & AVEFA 19.65 4.74 2.90 9.01 3.82 11.08 4.77 9.21 7.57 3.79 3.70
Bromus spp. 15.13 3.63 9.04 9.83 5.55 7.52 8.87 8.54 3.66 2.47 3.93
CAPBP 7.66 20.11 1.10 5.61 0.77 20.50 4.06 0.45 3.95 1.46 20.30
CIRAR 19.46 11.95 8.20 9.99 6.15 9.66 6.83 6.31 10.94 7.10 2.73
CONAR 92.96 12.59 28.79 20.00 37.50 38.14 35.20 43.42 31.90 31.57 19.87
DACGLb 46.15 44.38 54.47 48.86 56.10 66.17 41.65 40.47 42.94 44.22 41.05
DACGLc 25.35 8.86 19.52 15.51 5.56 6.77 5.97 7.19 11.22 13.92 16.21
DAUCA 11.11 2.91 1.05 0.80 2.02 4.78 2.45 1.52 4.37 3.83 4.26
ECNOR 27.43 8.00 20.99 19.14 13.33 10.70 9.99 10.74 13.26 12.89 7.46
EQUAR 5.57 0.00 20.04 3.45 4.62 3.49 3.06 20.97 0.04 0.88 1.48
FESARb 21.99 21.60 17.47 13.14 16.86 19.04 22.84 24.37 24.14 17.93 17.59
FESARc 15.21 10.34 6.52 4.18 3.09 1.87 5.18 6.03 4.37 1.00 2.62
GALAP 7.68 2.03 1.49 1.78 3.91 20.01 0.57 0.67 6.49 0.02 2.19
HOLLA 45.51 11.36 13.65 6.55 10.92 13.24 6.39 10.47 16.62 18.69 13.54
HOLMO 149.27 45.62 62.57 109.42 49.74 42.50 57.71 37.17 19.16 13.63 12.79
HRYRA 8.78 20.20 3.26 1.70 2.41 1.87 20.12 1.18 6.24 7.92 20.47
KICEL 15.78 0.64 0.00 8.95 2.27 20.53 0.82 3.07 8.09 5.75 6.28
LACSE 6.21 4.61 20.58 0.93 0.75 3.21 21.52 5.69 4.16 20.04 3.42
LOLMUb 43.70 17.93 12.50 6.34 19.59 17.03 10.66 16.18 17.27 10.03 14.06
LOLMUc 41.16 17.93 13.55 8.37 14.51 19.07 10.87 9.32 10.20 3.56 8.46
LOLPEb 33.72 26.80 23.04 20.38 18.19 23.17 21.00 22.19 19.70 17.41 20.36
LOLPEc 12.82 5.87 8.75 3.66 4.85 4.08 6.69 4.13 1.52 3.37 1.53
Lowland cudweed 17.48 2.18 3.03 8.13 3.51 20.48 2.58 7.77 0.83 5.61 0.90
MATMT 8.34 1.37 20.65 0.62 2.77 0.51 1.39 1.60 1.21 4.03 4.57
POAAN 79.73 13.88 20.65 33.49 19.75 27.82 23.58 21.61 15.71 17.43 25.65
POAPRb 27.71 31.00 18.24 5.45 2.41 8.58 12.76 3.98 9.91 14.71 13.97
POAPRc 28.55 21.05 9.45 2.07 4.83 4.79 16.17 5.16 10.33 13.33 12.53
POATRb 76.43 15.28 26.65 22.85 16.16 33.29 23.54 28.90 21.13 7.59 23.10
POATRc 81.82 17.16 29.15 22.85 16.16 33.29 23.54 28.90 21.13 9.60 25.50
POLPE 13.03 7.58 2.05 4.06 5.07 5.09 8.04 8.82 2.08 4.73 3.67
RUBDI 10.61 0.00 0.00 0.00 4.32 1.18 5.15 8.55 0.06 4.48 3.90
RUMOB & RUMCR 7.37 5.08 0.47 3.54 3.87 0.04 1.99 1.83 4.17 2.92 0.66
SENVU 15.44 3.65 1.01 8.71 2.89 2.83 1.52 9.82 20.96 3.50 0.71
SINAR 11.61 0.15 0.45 7.05 7.45 2.03 1.19 1.11 20.69 20.20 20.62
SONAR 19.46 8.66 1.35 1.35 2.35 5.62 5.06 11.28 4.94 3.47 4.93
TYPAR 5.08 1.43 1.62 2.13 4.56 3.41 3.70 20.22 1.65 20.14 1.10
VLPMY 20.20 7.90 0.51 4.56 8.03 5.83 1.20 5.19 5.78 1.95 8.75
Wheat 11.25 5.19 7.40 4.26 2.08 0.84 1.25 1.89 20.11 3.18 2.12

Mean Z-score 28.63 9.94 10.98 11.82 10.15 11.22 10.42 10.66 9.90 8.15 9.05
Median Z-score 19.46 7.43 6.52 6.35 4.92 5.09 5.18 7.19 6.57 4.73 4.93
No. cases significant 43 33 28 35 40 33 34 32 34 33 34

a Z-scores with absolute values in excess of 1.96, 2.575, and 3.27 are significant at the P # 0.05, 0.01, and 0.001 levels, respectively. Values significant at P # 0.05 are
denoted in bold type. Severity index values of 0, 0.75, 1.75, 2.75, and 3.75 denote weed species presence characterized as absent, trace, many, excessive, or grown as a
previous crop. Distance weight matrix for Moran’s I spatial autocorrelation was the reciprocal of the observed distance between field polygon centers plus 402 m.

b Including cases in which weed was grown as the crop with assigned severity index of 3.75.
c Excluding cases in which weed was present only when grown as the crop.
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low value clustering, although on average General G
significance values were substantially lower than Moran’s I.
In other words, spatial autocorrelation detected by Moran’s I
was primarily, though not entirely, due to clustering of fields
where weeds were present rather than where they were absent.
This means that we can discount clustering of management
practices that were unusually effective in controlling weeds as
being the major underlying cause for spatial autocorrelation of
most weeds. If clustering of any management practices was a
cause for spatial autocorrelation of weeds, it was much more
likely to have been clustering of ineffective practices. Such
practices are all too easily visualized, and range from grower
decisions to apply herbicides to all of his or her fields at rates
either too low for optimal weed control in an effort to save
money or too high for optimal crop tolerance in misguided
attempts to kill the last few percent of some particular weed,

efforts that often open up space in the stand for future
invasion by additional weeds. Because fields owned or
operated by a single grower are likely to be clustered due to
economic and logistical factors, any nonoptimal management
practices used by that grower will also be clustered. Italian
ryegrass represented an interesting exception to the concept
that ineffective management practices generally played greater
roles than highly effective ones in causing weeds to cluster.
Italian ryegrass was the seventh most strongly clustered weed
as measured by Moran’s I spatial autocorrelation, but it
ranked near the bottom (30th and 32nd excluding and
including cases in which it was grown as a crop) using General
G high/low clustering. This disparity in ranking between
Moran’s I and General G must mean that low values of
severity were clustering in almost as many cases as high values.
In other words, this weed was nearly universally present in

Table 2. Getis-Ord General G high/low clustering for severity of common grass seed weeds, Linn County, OR, by 10-yr maximum and by year, 1994 to 2003.

Weed species

Z-score for 10-yr maximum or single year severity indexa

10-yr maximum severity 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

AGRRE 13.50 3.52 8.52 4.45 4.27 2.99 3.09 4.96 7.79 4.65 13.31
AGSST & AGSTEb 12.30 11.24 8.91 11.86 14.96 14.10 19.08 14.41 8.60 10.01 11.82
AGSST & AGSTEc 20.16 0.77 20.72 22.24 1.35 20.25 20.34 0.01 3.52 3.11 4.01
AMAPO & AMARE 15.72 8.49 2.88 0.58 7.15 4.88 3.78 1.46 1.92 2.45 10.83
ANTCO 6.38 4.15 0.59 2.73 1.23 5.73 4.25 2.00 1.90 0.27 1.80
AVESA & AVEFA 6.07 3.17 0.32 5.50 1.99 8.18 2.45 3.67 5.38 2.83 2.59
Bromus spp. 0.52 1.20 2.53 6.25 2.69 3.90 2.48 1.10 1.65 0.93 0.43
CAPBP 3.59 20.54 0.97 3.89 20.14 0.06 2.93 20.10 3.04 1.21 0.10
CIRAR 4.76 5.01 5.63 4.76 4.82 5.39 2.61 2.18 3.65 2.39 1.78
CONAR 32.69 9.64 19.78 14.34 27.10 29.18 26.58 24.81 17.86 19.67 12.71
DACGLb 8.76 20.64 24.00 22.36 26.47 27.84 17.03 12.84 13.78 16.03 14.53
DACGLc 5.08 5.96 11.36 9.13 2.66 6.31 5.02 0.74 2.84 6.89 7.18
DAUCA 3.46 3.49 0.37 20.34 2.31 5.14 1.21 0.64 0.76 0.36 1.96
ECNOR 11.13 5.96 13.63 12.51 10.10 7.60 7.68 6.34 8.83 9.19 5.88
EQUAR 3.04 0.00 20.04 2.48 4.40 2.57 3.37 20.38 1.03 0.44 0.56
FESARb 20.24 6.26 2.75 1.86 2.10 4.41 3.64 3.18 4.14 2.24 20.50
FESARc 1.48 4.89 1.77 1.27 20.15 20.67 1.91 0.86 1.73 20.24 1.57
GALAP 5.71 1.07 2.08 1.60 2.72 20.07 1.21 0.41 6.17 0.40 1.93
HOLLA 10.53 7.22 6.29 2.65 3.48 5.85 5.14 3.24 7.35 9.57 9.55
HOLMO 50.66 26.29 36.81 54.55 31.56 27.45 34.02 24.28 12.81 8.70 10.30
HRYRA 1.99 20.13 1.28 0.13 1.30 1.89 20.43 20.03 4.52 5.26 20.01
KICEL 9.83 0.64 0.00 8.17 2.59 20.12 1.34 2.10 6.58 4.24 4.25
LACSE 3.03 3.49 20.48 20.09 20.67 4.47 20.92 2.63 2.30 0.99 1.56
LOLMUb 3.79 8.33 4.66 0.68 3.93 3.26 0.89 2.36 3.35 3.03 4.89
LOLMUc 4.59 8.33 4.90 2.05 1.18 4.68 1.56 20.51 2.34 0.69 2.98
LOLPEb 7.36 10.61 8.06 7.32 3.78 4.68 4.70 5.57 6.69 6.68 8.14
LOLPEc 9.42 5.56 8.40 2.93 5.40 3.46 5.77 2.84 1.58 3.13 2.05
Lowland cudweed 5.70 2.46 3.71 7.06 2.59 20.58 1.09 4.24 0.15 1.68 0.06
MATMT 5.18 1.37 20.61 20.60 1.86 0.51 1.09 1.19 0.90 3.86 4.01
POAAN 13.61 10.97 11.62 16.84 8.95 10.46 4.93 5.12 5.96 7.23 8.51
POAPRb 15.48 29.87 15.79 4.08 2.59 8.20 8.58 2.12 6.94 11.86 10.85
POAPRc 14.67 21.05 9.14 1.71 4.92 4.68 10.89 2.82 7.19 10.54 9.42
POATRb 13.55 7.81 12.37 10.16 5.35 13.55 6.21 5.66 8.92 4.25 10.15
POATRc 14.36 8.83 13.44 10.16 5.35 13.55 6.21 5.66 8.92 5.08 11.25
POLPE 4.10 5.64 0.87 1.41 2.07 4.61 7.28 6.01 1.72 3.09 1.33
RUBDI 7.26 0.00 0.00 0.00 4.87 0.75 5.51 8.34 0.07 3.87 2.21
RUMOB & RUMCR 0.28 3.87 0.41 0.68 1.77 0.08 0.99 20.87 1.97 0.75 0.18
SENVU 6.71 2.27 1.02 5.18 2.24 4.12 0.92 5.56 10.64 1.98 0.22
SINAR 5.83 20.23 0.02 4.99 4.85 2.88 0.88 0.03 0.42 0.35 21.07
SONAR 7.99 8.04 2.54 1.40 1.79 5.23 5.04 7.33 2.35 0.95 2.22
TYPAR 1.49 1.32 0.76 1.82 3.99 1.88 2.04 21.40 1.97 20.57 1.08
VLPMY 10.31 5.54 0.44 2.78 7.18 4.94 1.23 4.81 4.84 1.47 9.14
Wheat 6.34 4.94 6.97 2.63 1.32 0.59 0.20 1.66 0.10 3.00 1.83

Mean Z-score 8.55 5.97 5.90 5.85 5.36 6.01 5.19 4.18 4.77 4.29 4.83
Median Z-score 6.34 4.94 2.75 2.78 2.72 4.61 3.09 2.63 3.52 3.03 2.59
No. cases significant high value clustering 37 31 25 28 32 31 27 27 30 28 26

a Z-scores with absolute values in excess of 1.96, 2.575, and 3.27 are significant at the P # 0.05, 0.01, and 0.001 levels, respectively. Values significant at P # 0.05 are
denoted in bold type. Severity index values of 0, 0.75, 1.75, 2.75, and 3.75 denote weed species presence characterized as absent, trace, many, excessive, or grown as a
previous crop. Distance weight matrix for Getis-Ord General G high/low clustering was the reciprocal of the observed distance between field polygon centers plus 402 m.

b Including cases in which weed was grown as the crop with assigned severity index of 3.75.
c Excluding cases in which weed was present only when grown as the crop.
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Linn County grass seed fields, and clustering of management
practices that effectively controlled it was almost as important
as clustering of ineffective practices in generating the large
value for Moran’s I spatial autocorrelation.

Moran’s I Spatial Autocorrelation of Weed Severity
over Time. Within individual years from 1994 to 2003, the
number of weeds for which Moran’s I spatial autocorrelation
of severity was significant ranged from a low of 28 cases in
1995 to a high of 40 cases in 1997 (Table 1). Weeds with the
strongest spatial autocorrelation for 10-yr maximum severity

were those most likely to have significant spatial autocorre-
lation within individual years. Spatial autocorrelation was
significant in all 10 individual yr for German velvetgrass, field
bindweed, roughstalk bluegrass, annual bluegrass, orchard-
grass, common velvetgrass, Italian ryegrass, Agrostis spp. (when
crop cases were included), perennial ryegrass (when crop cases
were included), quackgrass, Avena spp. (oat [Avena sativa L.
AVESA] and wild oat [Avena fatua L. AVEFA]), Bromus spp.
(downy brome [Bromus tectorum L. BROTE], California
brome, and other unidentified bromes), Canada thistle,
western wildcucumber, tall fescue (when crop cases were
included), Kentucky bluegrass (when crop cases were

Table 3. Distance of peak clustering and maximum range of significance for Moran’s I spatial autocorrelation and Getis-Ord General G high/low clustering for 10-yr
maximum observed severity of common grass seed weeds, Linn County, OR, using fixed distance weighting method.

Weed species

Moran’s I spatial autocorrelation Getis-Ord General G high/low clustering

Distance for peak
autocorrelation

Z-score at peak
distancea

Maximum range
of significance

Distance for
peak clustering

Z-score at peak
distancea

Maximum range
of significance

km Z-value km km Z-value km

AGRRE 15 29.31 53 14 8.81 60
AGSST & AGSTEb 2 33.96 39 1 22.92 16
AGSST & AGSTEc 5 17.90 19 1 3.10 3
AMAPO & AMARE 5 21.90 29 5 17.33 27
ANTCO 59 5.79 71 48 3.26 59
AVESA & AVEFA 4 16.53 40 40 5.03 63
Bromus spp. 2 13.54 40 46 5.02 67
CAPBP 12 5.85 22 2 5.81 5
CIRAR 4 18.12 52 3 6.22 7
CONAR 6 86.96 32 3 34.63 42
DACGLb 5 38.28 54 2 11.16 17
DACGLc 6 26.13 46 46 5.98 67
DAUCA 20 11.89 36 31 5.86 61
ECNOR 2 27.15 12 1 17.30 10
EQUAR 11 6.78 25 12 3.35 16
FESARb 9 17.90 22 17 3.39 22
FESARc 14 14.26 29 39 4.10 62
GALAP 14 5.31 23 29 3.78 44
HOLLA 34 59.29 75 35 5.38 60
HOLMO 13 181.48 76 8 60.74 35
HRYRA 31 8.72 73 32 2.17 47
KICEL 8 19.60 17 5 10.83 24
LACSE 19 9.58 38 26 4.50 65
LOLMUb 18 40.90 42 32 9.43 67
LOLMUc 14 37.97 37 36 10.16 68
LOLPEb 13 32.79 47 35 7.01 64
LOLPEc 2 13.75 15 2 13.00 15
Lowland cudweed 17 20.20 45 17 7.74 65
MATMT 17 7.82 33 2 5.72 18
POAAN 14 97.29 45 14 15.26 73
POAPRb 23 26.09 63 10 10.03 36
POAPRc 7 29.26 52 6 15.13 65
POATRb 14 97.60 36 14 15.19 70
POATRc 14 102.74 36 14 15.97 70
POLPE 11 13.89 38 14 6.33 30
RUBDI 33 9.17 59 33 2.75 43
RUMOB & RUMCR 10 6.95 27 19 2.27 22
SENVU 17 12.84 32 23 3.81 35
SINAR 8 10.83 33 2 6.48 10
SONAR 13 18.08 54 19 7.65 68
TYPAR 11 3.08 14 17 1.98 17
VLPMY 19 19.65 74 4 12.95 21
Wheat 7 10.35 28 2 4.96 14

Mean 13.53 29.94 40.30 17.70 9.87 40.70
Median 13 18.08 38 14 6.33 42
No. cases significant 43 43

a Z-scores with absolute values in excess of 1.96, 2.575, and 3.27 are significant at the P # 0.05, 0.01, and 0.001 levels, respectively. Values significant at P # 0.05 are
denoted in bold type. Severity index values of 0, 0.75, 1.75, 2.75, and 3.75 denote weed species presence characterized as absence, trace, many, excessive, or grown as a
previous crop. Distance for peak autocorrelation and high/low clustering and maximum range of significance were identified by iterative testing using the fixed distance
band method with 1 km changes between runs until peaks and maximum ranges were found.

b Including cases in which weed was grown as the crop with assigned severity index of 3.75.
c Excluding cases in which weed was present only when grown as the crop.
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included), and ladysthumb (Polygonum persicaria L. POLPE).
When crop cases were excluded, the number of years in which
spatial autocorrelation was significant dropped to nine for
Agrostis spp. and Kentucky bluegrass, and to eight for tall
fescue and perennial ryegrass. Weeds showing the lowest
spatial autocorrelation for 10-yr maximum severity tended to
be those least likely to have significant spatial autocorrelation
within individual years. Spatial autocorrelation was significant
in only 3 of 10 yr for shepherd’s-purse [Capsella bursa-pastoris
(L.) Medicus CAPBP], catchweed bedstraw (Galium aparine
L. GALAP), pineapple-weed [Matricaria matricarioides (Less.)
C. L. Porter, MATMT], and wild mustard [Brassica kaber
(DC.) L. C.Wheeler SINAR], 4 yr for field horsetail
(Equisitum arvense L. EQUAR), common catsear (Hypochoeris
radicata L. HRYRA), and reed canarygrass (Phalaris arundi-
nacea L. TYPAR), and 5 yr for prickly lettuce and Himalaya
blackberry.

Wild carrot is commonly viewed to have increased
substantially in severity in western Oregon in recent history
(Cole et al. 2006). This weed showed significant spatial
autocorrelation in only 1 of the first 3 yr, but was spatially
autocorrelated in 3 of the middle 4 yr and all 3 of the final
3 yr. Such a pattern is certainly consistent with a weed
doubling in severity and increasing in geographic extent over
this time period, although other more elaborate interpreta-
tions might be made. Agronomic practices changing over this
time period include decreased use of field burning, changes in
frequency of fall vs. spring planting, shorter stand life of grass
seed fields, reduced rotation with cereals due to low
commodity prices, and increased restrictions on use of soil
residual herbicides (e.g., triazines). Although any of these
changes might have favored the proliferation of wild carrot,
we lack sufficient knowledge of production practices on
individual fields to apportion blame. No obvious temporal
trends were present in spatial autocorrelation averaged over all
weed species, a finding consistent with the concept that most
of these weeds had long since spread across the landscape and
achieved approximate equilibrium with current crop rotation
and within-crop weed control practices.

Getis-Ord General G High/Low Clustering of Weed
Severity over Time. Within individual years from 1994 to
2003, there were 34 cases in which Z-scores for Getis-Ord
General G high/low clustering were numerically less than
zero, but low value clustering was statistically significant only
once (Agrostis spp. excluding crop cases in 1996) (Table 2).
General G high/low clustering was exactly zero in five cases,
weeds with no nonzero severity observations in those years.
General G high value clustering was significant in 284 of the
391 remaining cases. The number of weeds for which Getis-
Ord General G high value clustering of severity was
significant ranged from a low of 25 cases in 1995 to a high
of 32 cases in 1997. Weeds with the strongest General G high
value clustering for 10-yr maximum severity were those most
likely to have significant high value clustering within
individual years. General G high value clustering was
significant in all 10 individual yr for German velvetgrass,
field bindweed, Kentucky bluegrass (when crop cases were
included), quackgrass, roughstalk bluegrass, annual bluegrass,
Agrostis spp. (when crop cases were included), western
wildcucumber, common velvetgrass, orchardgrass (when crop
cases were included), and perennial ryegrass (when crop cases

were included). When crop cases were excluded, the number
of years for which high value clustering was significant
dropped to nine for orchardgrass and perennial ryegrass, to
eight for Kentucky bluegrass, to six for Italian ryegrass, to
three for Agrostis spp., and to one for tall fescue. Weeds
showing the lowest General G high value clustering for 10-yr
maximum severity tended to be those least likely to have
significant high value clustering within individual years. High-
value clustering was significant in only 2 yr out of 10 for
common catsear, pineapple-weed, and Rumex spp. (broadleaf
dock [Rumex obtusifolius L. RUMOB] and curly dock [Rumex
crispus L. RUMCR]); 3 yr for shepherd’s-purse, catchweed
bedstraw, wild mustard, and reed canarygrass; 4 yr for wild
carrot, field horsetail, prickly lettuce, and wheat; and 5 yr for
mayweed chamomile (Anthemis cotula L. ANTCO), Bromus
spp., lowland cudweed (Gnaphalium palustre Nutt.), and
Himalaya blackberry. No obvious temporal trends were
present in General G high value clustering averaged over
weed species, a finding consistent with the concept that most
of these weeds had reached approximate equilibrium with
crop management practices.

Wild carrot underwent an interesting transition over time
in comparison of General G high/low clustering vs. Moran’s I
spatial autocorrelation. In the first 5 yr, both measurements
were significant or nonsignificant in the same individual years.
In the last 5 yr, however, they essentially decoupled, with
General G only achieving borderline significance in a single yr
whereas Moran’s I only failed to achieve significance one time.
Given that the weed was increasing in severity over the entire
10-yr time period, the loss of General G high value clustering
in the second half of the decade implies that clustering of
management practices or edaphic factors effective in preven-
tion or control of wild carrot had assumed greater importance
than the clustering of ineffective practices that favored the
weed.

Distance for Peak and Maximum Range of Significance of
Spatial Autocorrelation and High/Low Clustering. Knowl-
edge of the distances at which spatial autocorrelation and
high/low clustering peak and then fade to nonsignificance
would be useful for cluster identification using local Moran’s I
and Getis-Ord Gi* as well as calculation of semivariograms
used in kriging values observed at discrete locations across a
landscape (Mitchell 2005). Distance at which Moran’s I
spatial autocorrelation of 10-yr maximum weed severity
peaked ranged from 2 km for Agrostis spp. (when crop cases
were included), Bromus spp., western wildcucumber, and
perennial ryegrass (when crop cases were excluded) to 59 km
for mayweed chamomile (Table 3). The shortest distance at
which significance of spatial autocorrelation was lost was
12 km for western wildcucumber, whereas the greatest
distance at which significance was lost was 76 km for German
velvetgrass. Distances for peak high/low clustering ranged
from 1 km for Agrostis spp. and western wildcucumber to
48 km for mayweed chamomile. The shortest distance at
which significance of high/low clustering was lost was 3 km
for Agrostis spp. (when crop cases were excluded), while the
greatest distance at which significance was lost was 73 km for
annual bluegrass.

Of special interest were distances for peak effect and
maximum range of significance for weeds that possessed the
strongest spatial autocorrelation and high/low clustering. For
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German velvetgrass, spatial autocorrelation peaked at 13 km
and extended on out to 76 km, and high value clustering
peaked at 8 km and extended on out to 35 km (Table 3). For
field bindweed, spatial autocorrelation peaked at 6 km and
extended on out to 32 km, whereas high value clustering
peaked at 3 km and extended on out to 42 km. For
roughstalk bluegrass, spatial autocorrelation peaked at
14 km and extended on out to 36 km, and high value
clustering peaked at 14 km and extended on out to 70 km.
For annual bluegrass, spatial autocorrelation peaked at 14 km
and extended on out to 45 km, whereas high value clustering
peaked at 14 km and extended on out to 73 km. Weeds that
possessed relatively weak spatial autocorrelation (or high/low
clustering) tended to have narrower ranges in their distances
from peak significance to maximum range of significance. For
spatial autocorrelation, these ranges were 12 to 22 km for
shepherd’s-purse, 11 to 25 km for field horsetail, 14 to 23 km
for catchweed bedstraw, 17 to 33 km for pineapple-weed, 8 to
33 km for wild mustard, 31 to 73 km for common catsear,
and 11 to 14 km for reed canarygrass. For high/low
clustering, these ranges were 2 to 5 km for shepherd’s-purse,
12 to 16 km for field horsetail, 29 to 44 km for catchweed
bedstraw, 2 to 18 km for pineapple-weed, 2 to 10 km for wild
mustard, 32 to 47 km for common catsear, and 17 to 17 km
for reed canarygrass.

Given the areal extent of fields in our GIS of 84 km on a
NE–SW axis by 51 km on a NW–SE axis, significant spatial
autocorrelation in weeds such as German velvetgrass, common
velvetgrass, common catsear, and mayweed chamomile
extended out to distances approaching the maximum possible
range in our data. Indeed, the range of significant spatial
autocorrelation exceeded the 51 km NW–SE axis distance
across our study area for 12 of the 43 weeds (Table 3).
Although the maximum range of significant spatial autocor-
relation averaged 40.3 km by Moran’s I and 40.7 km by
Getis-Ord General G for the 43 weeds, distance for peak
spatial autocorrelation averaged only one-third as much
(13.5 km) for Moran’s I and 43% as much (17.7 km) for
Getis-Ord General G. Because ranges for autocorrelation of
weeds from the exploratory kriging analysis (data not shown)
had been closer to values for the maximum range of
significance than to those for peak autocorrelation distance
for fixed distance weighting methods with Moran’s I or Getis-
Ord General G, the methods we used to determine the range
for hot-spot analysis inherently produced higher resolution
maps than would have occurred if the substantially larger
ranges obtained from exploratory kriging had been used in
hot-spot analysis.

Distances for peak Moran’s I spatial autocorrelation and
Getis-Ord General G high/low clustering were most similar
for weeds with high values for General G. Distances for peak
autocorrelation or clustering of the two methods agreed to
within an average of 1.1 km for the 10 weeds with General G
Z-scores in excess of 13.0, whereas differences in peak distance
increased to an average of 8.4 km for the 13 weeds with
General G between 6.2 and 12.9, and to an average of
12.8 km for the 20 weeds with General G less than 6.0.
Among the 10 most strongly clustered weeds, the largest value
observed for distance of peak autocorrelation or high/low
clustering was 14 km, suggesting that the most convincingly
present clusters occurred in sizes less than or equal to
620 km2. Such sizes correspond to scales at which many farms
operate, and farm operators (owners and/or renters) were

found to differ significantly in effectiveness of their crop
rotations in controlling weeds (data not shown). Distance for
peak spatial autocorrelation and high/low clustering presum-
ably represented the combined effects over time of land
ownership/rental patterns, choice of crops grown on fields,
how those crops were managed, adaptation of weeds to soil
types within fields, and stochastic introductions of weeds into
fields. Some of the weeds with largest Getis-Ord General G
distances for peak clustering (e.g., Avena spp., Bromus spp.,
orchardgrass including cases grown as a crop, tall fescue
including cases grown as a crop, and Italian ryegrass) were
likely associated with past cropping history (cereal crops for
Avena spp. and Bromus spp., the crops themselves for
orchardgrass, tall fescue, and Italian ryegrass). Other weeds
with large peak clustering distances (e.g., mayweed chamo-
mile, common velvetgrass, and common catsear) might have
been more strongly influenced by adaptation to soil type than
by specific cropping history. Perennial weeds with very small
peak clustering distances (e.g., Agrostis spp., Canada thistle,
field bindweed, and western wildcucumber) likely represent
traditional weed infestations in which patches extend directly
across multiple neighboring fields.

Soil Type Effects. A total of 91 soil types occurred in one or
more of the 2,785 georeferenced certified grass seed fields
present in or near Linn County, OR. Clipping grass seed field
polygons with all 91 soil types generated 9,760 unique field
by soil type polygons. When restricted to soil types covering at
least 5, 10, or 21% of the area of the majority soil type in each
individual grass seed field, total numbers of soil types dropped
to 85, 82, or 80, and numbers of field by soil type polygons
dropped to 7,860, 7,165, or 6,023. When restricted to the
majority soil type on each individual grass seed field, total
number of soil types dropped to 69 and number of field by
soil type polygons dropped to 2,785. After preliminary
statistical analyses failed to detect soil type by weed species
interactions in all cases of 20 or fewer field by soil type
polygons, we restricted our analyses to those 36 soil types
present on a minimum 20 or more fields at an extent of 21%
or more of the majority soil type’s area within each field.
These restrictions provided a total of 5,801 field by soil type
polygons with which to conduct chi-square tests for
interaction of soil type and weed species as classification
factors for presence of weeds. We confirmed that these 36 soil
types were the most important to examine when we clipped
the full set of grass seed fields with these 36 soil types and
obtained 9,014 polygons, or over 93% of the total number of
polygons obtained when fields were clipped with all 91 soil
types.

Our analyses to predict the presence or absence of weeds
failed to reject the null hypothesis of freedom from interaction
between soil type and weed species for three grasses and five
broadleaves (Tables 4 and 5). Average frequencies of
occurrence for these eight cases were 0.04, 0.07, 0.04, 0.05,
0.09, 0.03, 0.03, and 0.12 for perennial ryegrass excluding
crop cases, reed canarygrass, wheat, catchweed bedstraw,
prickly lettuce, pineapple-weed, Himalaya blackberry, and
Rumex spp., respectively. The failure to detect interactions
with soil type for these eight weeds was not a problem of
inadequate statistical power (too few cases where the weeds
were present) because interactions with soil type were detected
for many other weeds whose average frequencies of occurrence
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were similarly low (e.g., Amaranthus spp, shepherd’s-purse,
common catsear, field horsetail, Kentucky bluegrass, and
rattail fescue all with average frequencies of occurrence from
0.03 to 0.07). The two weed species most often showing
significant interaction with soil type were German velvetgrass
and field bindweed. These were the two weed species showing
strongest Moran’s I spatial autocorrelation and Getis-Ord
General G high/low clustering of weed severity. Field
bindweed was the second most commonly occurring broadleaf
weed, with an average frequency of 0.20, and occurred less
often than expected on 19 of 36 soil types and more often
than expected on 7 of 36 soil types (Table 5). Canada thistle
was the most commonly occurring broadleaf weed, with an
average frequency of 0.31, but occurred less often than
expected in only three cases and more often than expected in
another three cases. Among the grassy weeds, German
velvetgrass was relatively uncommon, with an average
frequency of only 0.09, but occurred more often than
expected on 14 soil types and less often than expected on
another 14 soil types (Table 4). Of the 20 grasses with
significant interaction between soil type and weed species,
only four occurred less often on average than German
velvetgrass. Other grassy weeds for which interactions between
soil type and weed species were relatively common included
roughstalk bluegrass (frequency in 11 soils significantly less
than average and frequency in five soils greater than average),
common velvetgrass (frequency in five soils less than average
and frequency in 14 soils greater than average), quackgrass,
Agrostis spp., and annual bluegrass.

In an attempt to visualize contrasts in frequency of weed
occurrence among weed species and soil types, we generated
Fitch-Margoliash tree diagrams (Fitch and Margoliash 1967)
of the average distance among weed species and soil types
(Figures 2 and 3). Total distance (length of horizontal lines)
between pairs of weeds (or soils) indicated how similar/
dissimilar the pairs were, whereas number of nodes in the tree
between pairs indicated how many other weeds (or soils) were
more closely linked to members of the pair than the pair
members themselves were linked. Because tree branches are
free to rotate, mere proximity of species (or soils) labels within
the tree do not necessarily indicate closeness. Among the
weeds also grown as crops, roughstalk bluegrass, Kentucky
bluegrass, and Italian ryegrass all graphed with the crop cases
included or excluded as adjacent nodes on the tree (Figure 2).
Separation between crop cases included vs. excluded was four
nodes for Agrostis spp., eight nodes for orchardgrass, and nine
nodes for tall fescue. This separation indicated the presence of
substantial differences among soils on which these three
species were recently grown as crops and on which they
appeared as weeds. German velvetgrass and common
velvetgrass graphed adjacent to each other, despite a total
distance apart that was larger than for most other weeds and
their closest neighbors (data not shown). Tall fescue,
including crop cases, was most closely linked to Italian
ryegrass. Many broadleaf weeds most closely grouped with
other broadleaves, whereas others appeared in groups with
grasses. Shepherd’s-purse, Amaranthus spp., field horsetail,
and sharppoint fluvellin were all closely linked, and were next
most closely grouped with Kentucky bluegrass. Weeds most
similar to Canada thistle were Agrostis spp. including crop
cases and orchardgrass including crop cases at two nodes,
annual bluegrass and Bromus spp. at three nodes, and tall
fescue excluding crop cases and roughstalk bluegrass at four

nodes. Weeds most similar to field bindweed were common
groundsel (Senecio vulgaris L. SENVU) at one node apart;
western wildcucumber and ladysthumb at three nodes;
mayweed chamomile at four nodes; and wild carrot, common
velvetgrass, German velvetgrass, and orchardgrass excluding
crop cases at five nodes. The general appearance of the tree
diagram for soil types was one of more uniform dispersion
than the diagram for weed species. The diagram for soil types
was most noticeably lacking elements with extremely high
similarity to each other (Figure 3). The most closely linked
soils were Amity, Concord, and Dayton. Other pairs of
relatively closely linked soils were Coburg and Conser, Nekia
and Jory, Newberg and Cloquato, and Courtney and
Clackamas. Because soil chemical and physical properties
can be expected to influence both the farmers’ choice of crops
and the success of weeds within those crops and during fallow
periods between crops, interactions between weed species and
soil types will inherently be complex.

Although weeds by definition are plants well adapted to life
in areas under intensive human management, they neverthe-
less display a wide variety of survival adaptations. Many of the

Figure 2. Fitch-Margoliash tree diagrams of distance between 35 weed species
based on average differences among 36 soil types over a 10-yr period from weed
by soil type frequency of occurrence at any level matrix.

662 N Weed Science 56, September–October 2008



36 weeds in our study were relatively unaffected by soil type
and can therefore be viewed as generalists. Defining a soil type
generalist as a weed that interacted with soil type in less than
one-third of all cases, 14 of 23 grasses and 17 of 23
broadleaves were generalists. The other extreme of soil type
specialists was represented by weeds that interacted with soil
type in more than two-thirds of all cases, specifically field
bindweed and German velvetgrass. Clearly different weed
management strategies ought to be developed for the soil type
generalists likely to appear anywhere grass seed is grown in
western Oregon and soil type specialists generally absent from
certain soils but commonly present on others. Because these
two species also showed the strongest spatial autocorrelation,
it is a reasonable inference that weeds possessing strong spatial
autocorrelation are soil type specialists, at least when data are
collected from a mature agricultural industry with relatively
few newly invading weeds.

Principal Components Analysis (PCA), Redundancy
Analysis (RDA), Correspondence Analysis (CA), and

Canonical Correspondence Analysis (CCA). In an attempt
to extract dominant features of the interaction between weed
species and soil types in simpler terms, we conducted
multivariate analyses using PCA, RDA, CA, and CCA on
occurrence and severity of weeds. Explanatory factors added in
RDA and CCA models included crop species, soil type, and
four soil properties: clay content, cation exchange capacity
(CEC), pH, and hydraulic conductivity. Because software
limitations in ArcGIS had restricted PCA to a maximum of 20
weeds at a time, we exported data into the programming
environment R (version 2.6.0) where PCA, RDA, CA, and
CCA could be run on the full set of data. Unconstrained RDA
is simply PCA, and the first two eigenvectors accounted for a
total of only 19.3% of the inertia (or variance) in weed
occurrence (Table 6) and 27.0% of it in weed severity
(Table 7). The first 8 of 36 PCA eigenvectors accounted for
47.9 and 58.6% of the total variance in weed occurrence and
weed severity, respectively. Selecting all eigenvectors explain-
ing more than an average one 36th of the total variance, the
first 15 eigenvectors accounted for 70.6% of the variance in
weed occurrence, and the first 12 eigenvectors accounted for
71.1% of the variance in weed severity. These values of 15
dimensions for weed occurrence and 12 dimensions for weed
severity can be viewed as representing the practical dimen-
sionality of the data, and indicate that large numbers of
variables (15 for occurrence and 12 for severity) would be
needed to account for the most of the behavior of weeds in the
10 years of certified grass seed production. Bi-plot ordinations
of species distribution in the first two PCA dimensions
highlighted some major differences between patterns of weed
occurrence and weed severity (Figures 4 and 5). For weed
severity, 10 species differed sufficiently from the remaining
cluster to stand out in the overall plot, with annual bluegrass,
Italian ryegrass excluding crop cases, and roughstalk bluegrass
excluding crop cases being most unique, followed in
decreasing distance from the cluster by tall fescue excluding
crop cases, Bromus spp., Avena spp., common velvetgrass,
Canada thistle, German velvetgrass, and field bindweed
(Figure 5). Ranges of the two axes in weed occurrence bi-
plots were only about half as large as ranges in weed severity
plots, and fewer species were tightly clustered (Figure 4). In
addition to the 10 most unique species in the severity bi-plot
ordination, perennial sowthistle (Sonchus arvensis L. SONAR),
common groundsel, orchardgrass excluding crop cases,
western wildcucumber, mayweed chamomile, reed canary-
grass, quackgrass, wild mustard, wild carrot, Agrostis spp.
excluding crop cases, Kentucky bluegrass excluding crop cases,
Rumex spp., and ladysthumb also stood out from the 12
remaining weeds clustered together in the occurrence bi-plot.
When CA was used rather than PCA, weeds were more
uniformly dispersed in bi-plot ordinations for both occurrence
and severity (data not shown). Similar differences between CA
and PCA existed in the unconstrained eigenvalues, with each
individual higher order CA eigenvalue (1 to 2 for weed
occurrence and 1 to 4 for weed severity) explaining less than
70% of the variance explained by the corresponding PCA
eigenvalues (Tables 6 and 7).

Soil type was the most successful variable added in RDA or
CCA of either weed occurrence or severity, but even it only
explained 6.2 and 7.6% of the total RDA variance in weed
occurrence and severity, respectively (Tables 6 and 7).
Dummy crop variables (defined as equal to 1 for fields in
which a given crop species had been grown at any time over

Figure 3. Fitch-Margoliash tree diagrams of distance between 36 soil types based
on average differences among 35 weed species over a 10-yr period from weed by
soil type frequency of occurrence at any level matrix.
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the decade and otherwise equal to 0) for Agrostis spp.,
orchardgrass, tall fescue, Italian ryegrass, and perennial
ryegrass together explained 5.5 and 7.2% of the total variance
in weed occurrence and severity, respectively. Dummy soil
type and crop variables were relatively independent, and
models with both factors combined explained 95.0 and 93.4%
of the sum of the separate (single variable) soil type and crop
variances for weed occurrence and severity, respectively. Plots
of CCA for weed occurrence and severity as affected by soil
type and crop both identified similar weeds as behaving most
uniquely (Figures 6 and 7). German velvetgrass was furthest
from the centers of the ordination axes in both cases, followed
in order of decreasing distance by rattail fescue, common
velvetgrass, and weedy perennial ryegrass (i.e., excluding crop
cases). Vectors representing Nekia and Jory soil types and
Agrostis spp. as crop type pointed in the same general direction
as German velvetgrass, rattail fescue, and weedy perennial

ryegrass (vector data not shown). Weedy tall fescue and
roughstalk bluegrass plotted close to each other for both
occurrence and severity, with the perennial ryegrass crop
vector pointing close to both of them. Weeds most closely
linked to field bindweed in both occurrence and severity
included shepherd’s-purse, sharppoint fluvellin, and field
horsetail. Annual bluegrass and weedy Italian ryegrass plotted
in the same general direction as weedy roughstalk bluegrass for
both occurrence and severity, although much closer to the
centers of the ordination axes. In contrast to the crops
variable, soil chemical/physical properties variables were
highly colinear with soil type, but this was to be expected
because each soil type was assigned only a single value of each
of the soil property variables. The four soil property variables
by themselves only explained 17.8 and 18.1% as much of the
total variance in weed occurrence and severity, respectively, as
the 36 soil types explained. Adding soil properties variables to

Table 6. Constrained and unconstrained inertia in RDA and CCA of occurrence of 36 weeds over a 10-yr period using soil type, crop, and soil chemical/physical
properties as constraining variables, and higher order eigenvalues.

Model
typeb Constraining factors

Inertia (variance) Unconstrained eigenvalues Constrained eigenvaluesa

Constrained Unconstrained First Second Sum 1–8 of 36 First Second Third Fourth

PCA none — 4.1703 0.4596 0.3465 1.9995 — — — —
RDA 36 soil types 0.2607 3.9096 0.4232 0.2873 1.8253 0.0845 0.0724 0.0210 0.0156
RDA 5 crops 0.2287 3.9416 0.4131 0.2936 1.8263 0.1292 0.0528 0.0314 0.0118
RDA soil properties 0.0462 4.1242 0.4557 0.3275 1.9614 0.0326 0.0095 0.0034 0.0007
RDA soil type + crop 0.4651 3.7052 0.3794 0.2395 1.6725 0.1555 0.0865 0.0733 0.0344
RDA soil type + soil properties 0.2628 3.9075 0.4231 0.2871 1.8242 0.0851 0.0729 0.0212 0.0157
RDA crop + soil properties 0.2711 3.8992 0.4092 0.2772 1.7917 0.1324 0.0561 0.0405 0.0200
RDA soil type + crop + soil properties 0.4672 3.7031 0.3793 0.2390 1.6712 0.1557 0.0870 0.0734 0.0349
CA none — 4.9503 0.2746 0.2432 1.6171 — — — —
CCA 36 soil types 0.2660 4.6840 0.2225 0.1941 1.4549 0.0888 0.0673 0.0146 0.0135
CCA 5 crops 0.1461 4.8042 0.2638 0.2175 1.5537 0.0666 0.0538 0.0153 0.0071
CCA soil properties 0.0523 4.8980 0.2487 0.2354 1.5746 0.0399 0.0089 0.0029 0.0006
CCA soil type + crop 0.3958 4.5545 0.2104 0.1845 1.4045 0.1003 0.0903 0.0445 0.0392
CCA soil type + soil properties 0.2690 4.6810 0.2222 0.1937 1.4533 0.0898 0.0681 0.0146 0.0135
CCA crop + soil properties 0.1967 4.7537 0.2371 0.2101 1.5122 0.0713 0.0597 0.0311 0.0163
CCA soil type + crop + soil properties 0.3987 4.5516 0.2099 0.1843 1.4027 0.1010 0.0907 0.0449 0.0395

a Total number of constrained eigenvectors varied with model, and was four for soil properties, five for crops, nine for crops + soil properties, and 36 for all other cases.
Kentucky bluegrass and roughstalk bluegrass were excluded from dummy crop variables because of their extremely small number of cases.

b Abbreviations: CA 5 Correspondence Analysis; CCA 5 Canonical Correspondence Analysis; PCA 5 Principal Components Analysis; RDA 5 Redundancy
Analysis.

Table 7. Constrained and unconstrained inertia in RDA and CCA of maximum observed severity of 36 weeds over a 10-yr period using soil type, crop, and soil
chemical/physical properties as constraining variables, and higher order eigenvalues.

Model typeb Constraining factors

Inertia (variance) Unconstrained eigenvalues Constrained eigenvaluesa

Constrained Unconstrained First Second Sum 1–8 of 36 First Second Third Fourth

PCA none — 4.9285 0.8581 0.4713 2.8898 — — — —
RDA 36 soil types 0.3735 4.5550 0.7299 0.4269 2.5948 0.1799 0.0824 0.0253 0.0183
RDA 5 crops 0.3538 4.5747 0.6971 0.4339 2.5984 0.2273 0.0813 0.0297 0.0116
RDA soil properties 0.0675 4.8610 0.8354 0.4645 2.8285 0.0476 0.0159 0.0032 0.0008
RDA soil type + crop 0.6790 4.2500 0.5942 0.3989 2.3504 0.3199 0.1132 0.0883 0.0421
RDA soil type + soil properties 0.3758 4.5527 0.7295 0.4266 2.5932 0.1805 0.0832 0.0254 0.0184
RDA crop + soil properties 0.4141 4.5144 0.6797 0.4261 2.5441 0.2397 0.0845 0.0434 0.0216
RDA soil type + crop + soil properties 0.6813 4.2472 0.5938 0.3987 2.3490 0.3203 0.1134 0.0889 0.0424
CA none — 5.0824 0.3193 0.2826 1.7441 — — — —
CCA 36 soil types 0.3116 4.7707 0.2291 0.2228 1.5326 0.1145 0.0848 0.0176 0.0137
CCA 5 crops 0.1826 4.8998 0.2963 0.2451 1.6508 0.0929 0.0630 0.0162 0.0068
CCA soil properties 0.0597 5.0227 0.3036 0.2559 1.6962 0.0457 0.0108 0.0024 0.0008
CCA soil type + crop 0.4651 4.6173 0.2159 0.2046 1.465 0.1423 0.1116 0.0492 0.0393
CCA soil type + soil properties 0.3144 4.7679 0.2288 0.2223 1.5313 0.1151 0.0859 0.0176 0.0138
CCA crop + soil properties 0.2395 4.8429 0.2679 0.2307 1.6034 0.0966 0.0741 0.0337 0.0169
CCA soil type + crop + soil properties 0.4679 4.6145 0.2152 0.2045 1.4635 0.1426 0.1125 0.0496 0.0394

a Total number of constrained eigenvectors varied with model, and was four for soil properties, five for crops, nine for crops + soil properties, and 36 for all other cases.
Kentucky bluegrass and roughstalk bluegrass were excluded from dummy crop variables because of their extremely small number of cases.

b Abbreviations: CA 5 Correspondence Analysis; CCA 5 Canonical Correspondence Analysis; PCA 5 Principal Components Analysis; RDA 5 Redundancy
Analysis.
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models already possessing a soil type variable only increased
the total variance explained by approximately 1%. Adding soil
type, crop, and soil properties variables in CCA models of
weed occurrence and severity gave results generally similar to
those in RDA models, although each variable in CCA
explained a slightly smaller proportion of the total variance.
Soil types most closely linked in RDA ordinations included
Jory and Nekia; Chapman, McBee, Newberg fine sandy loam,
Cloquato, and Malabon; Willamette, Awbrig, Waldo,
Bashaw, Concord, Woodburn, and Amity; Courtney and
Hazelair; and Santiam, McAlpin, Bellpine, and Salkum (data
not shown).

The presence of detectable soil type and crop variable
effects on weed occurrence and severity patterns suggests that,
to a limited extent, both soils present within fields and crops
grown on those fields acted to define weed problems.
Although this is certainly not a surprising finding, our
successful detection of those patterns is an encouraging
confirmation of the validity of the procedures we used to

convert field inspection reports into a GIS and analyze the
data. Despite this success, the inability of dummy soil type
and crop variables to constrain the remaining 88% of variance
in weed occurrence and 86% in weed severity reminds us that
many other factors were at work in determining which weeds
were present, which were absent, and how severe those weeds
present actually were in certified grass seed fields. Herbicide
treatment programs and crop rotation sequences are two
major unaccounted factors, and unfortunately little public
data exist for identifying them. We do, however, have data on
age of grass seed stands, seasonal planting date, and duration
of the rotational period between certified grass seed crops for
fields in our GIS, and multivariate analysis of the effects of
those variables on weed occurrence and severity is currently
being prepared for publication.

Additional analyses of the four soil chemical/physical
properties variables revealed that despite the relatively small
size of their effects on weed occurrence and severity, those
effects nonetheless were often statistically significant (data not
shown). Because values for clay content, hydraulic conduc-

Figures 4. Bi-plot ordination of principal component analysis of weed
occurrence by fields over the 10-yr period. Entire ordination is shown on the
left, and a zoom-in to the center data cluster is shown on the right. Species ID
have been shortened to three letters where that introduced no ambiguity, and a
‘‘w’’ preceding the Bayer code ID indicates exclusion of cases where the species
was grown as a crop.

Figures 6. Bi-plot ordination of canonical correspondence analysis of weed
occurrence by fields over the 10-yr period using dummy variables for 36 soil types
and five crop species. Species ID have been shortened to three letters where that
introduced no ambiguity, and a ‘‘w’’ preceding the Bayer code ID indicates
exclusion of cases where the species was grown as a crop.

Figures 5. Bi-plot ordination of principal component analysis of maximum weed
severity by fields over the 10-yr period. Entire ordination is shown on the left, and
a zoom-in to the center data cluster is shown on the right. Species ID have been
shortened to three letters where that introduced no ambiguity, and a ‘‘w’’
preceding the Bayer code ID indicates exclusion of cases where the species was
grown as a crop.

Figures 7. Bi-plot ordination of canonical correspondence analysis of maximum
weed severity by fields over the 10-yr period using dummy variables for 36 soil
types and five crop species. Species ID have been shortened to three letters where
that introduced no ambiguity, and a ‘‘w’’ preceding the Bayer code ID indicates
exclusion of cases where the species was grown as a crop.
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tivity, CEC, and pH came from USDA–NRCS soil surveys
rather than measurements within our individual fields, they
were assigned only a single value for each soil type and a
limited number of values for each grass seed field (calculated
as the unweighted average of the values for all soil types
covering 21% or more of the area of the majority soil type
within an individual field). This limited the precision of our
estimates of soil properties and restricted interpretation of
analyses. Nevertheless, analyses indicated that basic soil
physical and chemical properties could function as useful
surrogates for part of the soil type effect on weed occurrence
and severity. To better understand the relationship between
soil properties and weed occurrence and severity data, we
analyzed clustering patterns of four soil properties using fixed
distance weighting methods to determine the distance for
peak significance and the maximum range of significance for
Moran’s I spatial autocorrelation. Distances for peak
significance in spatial autocorrelation of clay content,
hydraulic conductivity, CEC, and pH were 19, 4, 53, and
8 km, whereas maximum ranges of significance for these
variables were 43, 30, 67, and 27 km. Distances for peak
significance and maximum range of significance for hydraulic
conductivity and pH were less than average distances for peak
significance and maximum range of significance for severity of
the 43 weeds. Corresponding distances for clay content and
CEC were greater than averages for the weeds. None of the
distances for spatial autocorrelation of soil properties fell
outside of the observed range of distances for spatial
autocorrelation of weed severity. Although clay content,
hydraulic conductivity, CEC, and pH only partially substi-
tuted for the effects of our 36 soil types, their inclusion in

future GIS data compilations might be warranted if costs were
incidental because the data already existed and merely had to
organized and imported into a GIS.

Multivariate analysis offers the potential to simplify large,
complex data sets by identifying variables that behave
similarly, allowing data to be regrouped into smaller,
somewhat more easily visualized entities. Dimensionality of
our data was high, with the best 15 eigenvectors for
occurrence and 12 eigenvectors for severity still leaving
approximately 29% of variation in weeds unrepresented. Our
primary finding from multivariate analysis was that the
combination of our two best explanatory variables, soil type
and crop species grown in the field, still left 86% of the
variation in weed severity and 88% of the variation in weed
occurrence unexplained. Although soil chemical and physical
properties measured at the soil type level rather than within
individual fields were poor substitutes for the full list of soil
types, they nonetheless were capable of explaining a small but
significant amount of the variation in weed occurrence and
severity, and might explain more if measured on an individual
soil type by field basis. PCA of weed severity identified the 10
most uniquely behaving weeds of western Oregon grass seed
crops as annual bluegrass, Italian ryegrass, roughstalk
bluegrass, tall fescue, Bromus spp., Avena spp., common
velvetgrass, Canada thistle, German velvetgrass, and field
bindweed. Multivariate clustering of the remaining 33 weeds
indicated that they tended to be present or absent at relatively
similar levels of severity within individual fields. In contrast,
the 10 most unique weeds must each be studied individually if
we desire to understand the role that crop management
practices, soil type, and past field history play in determining

Figure 8. Gi* hot-spot analysis for 10-yr maximum severity of German
velvetgrass using 8 km fixed distance neighborhood method. Dark blue, blue,
light blue, dark aqua, and aqua colors denote areas with significantly lower than
expected weed severity at the P 5 0.0001, 0.001, 0.01, 0.05, and 0.1 levels,
respectively. Bright red, red, orange, and orange-yellow, and yellow denote areas
with significantly higher than expected weed severity at the P 5 0.0001, 0.001,
0.01, 0.05, and 0.1 levels, respectively. Green areas are neither significantly higher
nor lower than expected in weed severity. Scale is 1:275,000 if map is printed as a
full page.

Figure 9. Gi* hot-spot analysis for 10-yr maximum severity of field bindweed
using 4 km fixed distance neighborhood method. Dark blue, blue, light blue,
dark aqua, and aqua colors denote areas with significantly lower than expected
weed severity at the P 5 0.0001, 0.001, 0.01, 0.05, and 0.1 levels, respectively.
Bright red, red, orange, and orange-yellow, and yellow denote areas with
significantly higher than expected weed severity at the P 5 0.0001, 0.001, 0.01,
0.05, and 0.1 levels, respectively. Green areas are neither significantly higher nor
lower than expected in weed severity. Scale is 1:275,000 if map is printed as a
full page.
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Figure 10. Gi* hot-spot analysis for 10-yr maximum severity of roughstalk
bluegrass grass using 14 km fixed distance neighborhood method. Dark blue,
blue, light blue, dark aqua, and aqua colors denote areas with significantly lower
than expected weed severity at the P 5 0.0001, 0.001, 0.01, 0.05, and 0.1 levels,
respectively. Bright red, red, orange, and orange-yellow, and yellow denote areas
with significantly higher than expected weed severity at the P 5 0.0001, 0.001,
0.01, 0.05, and 0.1 levels, respectively. Green areas are neither significantly higher
nor lower than expected in weed severity. Scale is 1:275,000 if map is printed as a
full page.

Figure 11. Gi* hot-spot analysis for 10-yr maximum severity of annual bluegrass
using 14 km fixed distance neighborhood method. Dark blue, blue, light blue,
dark aqua, and aqua colors denote areas with significantly lower than expected
weed severity at the P 5 0.0001, 0.001, 0.01, 0.05, and 0.1 levels, respectively.
Bright red, red, orange, and orange-yellow, and yellow denote areas with
significantly higher than expected weed severity at the P 5 0.0001, 0.001, 0.01,
0.05, and 0.1 levels, respectively. Green areas are neither significantly higher nor
lower than expected in weed severity. Scale is 1:275,000 if map is printed as a
full page.

Figure 12. Gi* hot-spot analysis for 10-yr maximum severity of Canada thistle
using 4 km fixed distance neighborhood method. Dark blue, blue, light blue,
dark aqua, and aqua colors denote areas with significantly lower than expected
weed severity at the P 5 0.0001, 0.001, 0.01, 0.05, and 0.1 levels, respectively.
Bright red, red, orange, and orange-yellow, and yellow denote areas with
significantly higher than expected weed severity at the P 5 0.0001, 0.001, 0.01,
0.05, and 0.1 levels, respectively. Green areas are neither significantly higher nor
lower than expected in weed severity. Scale is 1:275,000 if map is printed as a
full page.

Figure 13. Gi* hot-spot analysis for 10-yr maximum severity of western
wildcucumber using 4 km fixed distance neighborhood method. Dark blue,
blue, light blue, dark aqua, and aqua colors denote areas with significantly lower
than expected weed severity at the P 5 0.0001, 0.001, 0.01, 0.05, and 0.1 levels,
respectively. Bright red, red, orange, and orange-yellow, and yellow denote areas
with significantly higher than expected weed severity at the P 5 0.0001, 0.001,
0.01, 0.05, and 0.1 levels, respectively. Green areas are neither significantly higher
nor lower than expected in weed severity. Scale is 1:275,000 if map is printed as a
full page.
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their severity. Although study of these factors would certainly
improve our understanding of the behavior of any of the 43
weeds, greatest return on efforts would occur from study of
the 10 most unique ones.

Hot spot Localization. Protection of grower privacy was an
overriding concern in mapping of weed hot spots. Average
number of neighboring points in Gi* calculations was 93 for a
4 km fixed distance band and 623 for a 14 km band. Because
14 km was also the median distance to peak clustering for all
43 weeds (Table 3), hot-spot probability values reflected the
influence of at least seven individual fields in the Gi* analysis
and 12 fields in the raster creation, and on average represented
over 600 fields. Given an average grass seed field size of 18 ha,
seven fields would correspond to the minimum reporting unit
size traditionally used by the OSCS when aggregating
production data by county, 122 ha.

For the four most strongly clustered weeds, German
velvetgrass, field bindweed, roughstalk bluegrass, and annual
bluegrass, neighborhood distances were set to 8, 4, 14, and
14 km in the Gi* fixed distance weighting method (Figures 8,
9, 10, and 11). German velvetgrass clearly showed a
concentration in northeastern Linn County grass seed acreage,
with a secondary east-west band in the southern third of the
area (Figure 8). Field bindweed showed a less simple pattern,
with below average severity in the northeastern region and in
two areas near the center (Figure 9). Hot spots for field
bindweed existed along rivers in the northern third and in far
southwestern portion of the area. Annual bluegrass and
roughstalk bluegrass had patterns of severity similar to each
other, with a large hot spot from the center to the southwest
and below average severity in the northeastern section
(Figures 10 and 11). The distribution of these two weeds
differed in the southwestern region, with a much more
pronounced cool spot for roughstalk bluegrass than annual
bluegrass. Maps for two of the perennial weeds with smallest
distances for peak high/low clustering, Canada thistle and
western wildcucumber, possessed several highly similar hot
and cold spots, along with additional hot spots present for
only one or the other of these weeds (Figures 12 and 13).
Weeds with the strongest global spatial autocorrelation or
high/low clustering tended to produce Gi* maps that were
mainly covered by extremely high probabilities of hot spots or
cold spots. Weeds with low global spatial autocorrelation or
high/low clustering tended to produce maps with large areas
of nonsignificance for hot spots or cold spots. Maps of all 43
weeds in JPG format at 1:275,000 scale and ArcGIS image
rasters are available online at http://www.ars.usda.gov/pandp/
people/people.htm?personid54006.

The Gi* hot-spot analysis probability maps can be used by
growers and consultants to determine whether specific weeds
are, or are not, highly likely to occur as problems within
specific fields. Fields located in areas with high probabilities of
problems with specific weeds could receive more intensive
scouting before relying on failure to find particular weeds in
initial low intensity scouting as sufficient reason to forgo
potential herbicide treatments, crop rotation practices, or
seed-cleaning options. Conversely, growers with fields located
in areas with low probabilities of problems with specific weeds
could reduce the intensity of scouting and/or spot-spray
programs for those weeds unless they already knew that their
particular field had problems with a weed even though it was

uncommon in the local area. The maps will also be useful in
cases where rental contracts or landownership have changed,
providing new managers with a ranking of which weeds were
most likely to be problems in a field. Given the variation that
existed within the data in the GIS, it is clear that the maps will
never act as infallible predictors of where weed problems will
occur. Rather they should serve as guides to help reduce the
incidence of both failure to anticipate problems with specific
weeds and unnecessary use of herbicides and other weed
control treatments on weeds that don’t truly exist within given
fields.

Implications

Clustering in the distribution of grass seed weeds occurred as
a consequence of both cropping history and edaphic factors,
and was stronger for some weed species than others. For
strongly clustered species such as German velvetgrass, field
bindweed, roughstalk bluegrass, and annual bluegrass, growers
and production advisors need to consider geographic location
in tailoring of weed control practices to optimize resource
allocation. For recently worsening problems such as wild carrot,
availability of GIS data could help us understand factors
contributing to this weed’s spread and focus control efforts.
The significant relationships between soil chemical and physical
properties and weed severity on scales as coarse as soil type
suggests value to incorporation of more detailed measurements
of soil properties in future GIS databases. Finally, publication
of maps of weed hot spots could help grass seed growers,
production consultants, seed certification agencies, and seed
companies more accurately monitor the impact of field
production practices on weed severity. Procedures used to
develop these maps maintained grower confidentiality while
providing useful information to the grass seed industry.

Acknowledgments

Appreciation for technical assistance is expressed to D. Scott
Culver, Doug Bilsland, Lee Schweitzer, Ron Cook, and Dan
Sundseth.

Literature Cited

Box, G.E.P. 1988. Signal-to-noise ratios, performance criteria, and transforma-
tions. Technometrics 30:1–40.

Brownie, C. and M. L. Gumpertz. 1997. Validity of spatial analyses for large field
trials. J. Agric. Biol. Environ. Stat. 2:1–23.

Cardina, J., D. H. Sparrow, and E. L. McCoy. 1995. Analysis of spatial
distribution of common lambsquarter (Chenopodium album) in no-till soybean
(Glycine max). Weed Sci. 43:258–268.

Clay, S. A., B. Kreutner, D. E. Clay, C. Reese, J. Kleinjan, and F. Forcella. 2006.
Spatial distribution, temporal stability, and yield loss estimates for annual
grasses and common ragweed (Ambrosia artimisiifolia) in a corn/soybean
production field over nine years. Weed Sci. 54:380–390.

Colbach, N., F. Forcella, and G. A. Johnson. 2000. Spatial and temporal stability
of weed populations over five years. Weed Sci. 48:366–377.

Cole, C. M., R. P. Affeldt, B. D. Brewster, J. B. Colquhoun, and C. A. Mallory-
Smith. 2006. Wild carrot control in tall fescue with chlorsulfuron. 2005 Seed
Production Research at Oregon State University, USDA–ARS Cooperating.
W. C. Young, III, ed. Ext/CrS 125, Pages 6–7. http://cropsandsoil.oregonstate.
edu/seed-ext/Pub/2005/3.pdf. Accessed July 30, 2008.

Cousens, R. D., R. W. Brown, A. B. McBratney, B. Whelan, and M. Moerkerk.
2002. Sampling strategy is important for producing weed maps: a case study
using kriging. Weed Sci. 50:542–546.

Dale, M.R.T. 1999. Spatial Pattern Analysis in Plant Ecology. Cambridge, U.K.:
Cambridge University Press. 326 p.

668 N Weed Science 56, September–October 2008



Dieleman, J. A., D. D. Buhler, C. A. Cambardella, and T. B. Moorman. 2000a.
Identifying associations among site properties and weed species abundance. I.
Multivariate analysis. Weed Sci. 48:567–575.

Dieleman, J. A., D. A. Mortensen, D. D. Buhler, and R. B. Furguson. 2000b.
Identifying associations among site properties and weed species abundance. II.
Hypothesis generation. Weed Sci. 48:576–587.

Dille, J. A. 2002. How good is your weed map? A comparison of spatial
interpolators. Weed Sci. 51:44–55.

Donald, W. W. 1994. Geostatistics for mapping weeds, with a Canada thistle
(Cirsium arvense) patch as a case study. Weed Sci. 42:648–657.

Fitch, W. M. and E. Margoliash. 1967. The construction of phylogenetic trees—a
generally applicable method utilizing estimates of the mutation distance
obtained from cytochrome c sequences. Science 155:279–284.
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